
Undergraduate Lecture Notes in Physics

Gerhard Ecker

Particles, 
Fields, 
Quanta
From Quantum Mechanics to the 
Standard Model of Particle Physics



Undergraduate Lecture Notes in Physics



Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts
covering topics throughout pure and applied physics. Each title in the series is
suitable as a basis for undergraduate instruction, typically containing practice
problems, worked examples, chapter summaries, and suggestions for further reading.

ULNP titles must provide at least one of the following:

• An exceptionally clear and concise treatment of a standard undergraduate
subject.

• A solid undergraduate-level introduction to a graduate, advanced, or
non-standard subject.

• A novel perspective or an unusual approach to teaching a subject.

ULNP especially encourages new, original, and idiosyncratic approaches to physics
teaching at the undergraduate level.

The purpose of ULNP is to provide intriguing, absorbing books that will continue
to be the reader’s preferred reference throughout their academic career.

More information about this series at http://www.springer.com/series/8917

Series editors

Neil Ashby
University of Colorado, Boulder, CO, USA

William Brantley
Department of Physics, Furman University, Greenville, SC, USA

Matthew Deady
Physics Program, Bard College, Annandale-on-Hudson, NY, USA

Michael Fowler
Department of Physics, University of Virginia, Charlottesville, VA, USA

Morten Hjorth-Jensen
Department of Physics, University of Oslo, Oslo, Norway

Michael Inglis
Department of Physical Sciences, SUNY Suffolk County Community College,
Selden, NY, USA

http://www.springer.com/series/8917


Gerhard Ecker

Particles, Fields, Quanta
From Quantum Mechanics to the
Standard Model of Particle Physics

123



Gerhard Ecker
Fakultät für Physik
Universität Wien
Vienna, Austria

ISSN 2192-4791 ISSN 2192-4805 (electronic)
Undergraduate Lecture Notes in Physics
ISBN 978-3-030-14478-4 ISBN 978-3-030-14479-1 (eBook)
https://doi.org/10.1007/978-3-030-14479-1

Library of Congress Control Number: 2019933843

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

Planning/editing: Lisa Edelhäuser

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14479-1


To Linda and Julia



Foreword

Why Physics?

Books often promise to be easily digestible, to provide useful counseling and
exciting reading. I find this book very exciting but it requires – especially in later
chapters – active engagement and willingness to learn. In this case, the reader is
rewarded with a profound introduction to the foundations of modern physics.

But what is it good for? Does one really have to know about gauge groups and
symmetry breaking or how quarks and gluons interact? Not necessarily. But
whoever gets involved in such questions will not just get recipes for kitchen and
garden but deep insights into the mysteries of nature. And once you get the taste of
it you want to know more.

As a high school student in Vienna, my Christmas list contained books with such
promising titles as: Einstein and the Universe, Physics and Philosophy, and Man
and the Cosmos. Famous physicists like Einstein, Bohr and Heisenberg expressed
themselves in their popular writings in such an easily comprehensible way that I
believed to understand how modern science works.

But then I put a book with the fascinating title “Gravity and the Universe” on my
reading list. The author was a certain Pascual Jordan, known to me as a pioneer of
quantum theory. The bookseller handed over the slim volume with an ironic smile
that I at first misunderstood as admiration. But even the first glimpse into the book
shattered my naive concept of physics completely. The text mainly consisted of
formulas that did not mean anything to me: Greek letters surrounded by a cloud of
upper and lower indices, characters with one or two dots on top, strange symbols
for – as I learned only much later – summation and integration. And as if the author
wanted to ridicule me, the few lines of normal text did not explain anything but
maintained: the well-known relation … holds; as can easily be seen, this follows
from …, etc.

The shock made a deep impression on me, and I realised: just as one has to know
Chinese in order to understand China one does not get anywhere in physics without
higher mathematics. And so I decided to learn the language of nature. In other
words, I decided to study theoretical physics.
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Maybe that would never have happened if I had not had the physics teacher
mentioned by my classmate Gerhard Ecker, author of the present book, in the
introductory remarks. Of course, that excellent pedagogue had to stay within the
confines of high school mathematics, but he managed, for instance, to convince us
of the power of calculus in the discussion of acoustic and electromagnetic waves.
We understood immediately why the cosine is the first derivative of the sine and
how this can be used for the description of oscillating circuits with solenoids and
capacitors.

And so Ecker and I began to study theoretical physics at the University of
Vienna. At that time – I am talking about an ancient epoch in the middle of last
century – the Cold War was on. The Soviet Union had just baffled the West with the
start of a beeping satellite and with manned space flights. Under the impression
of the Sputnik shock, the West undertook great efforts not only to catch up in
aerospace but also to push forward basic science. Therefore, a career in physics was
considered highly promising. However, towards the end of our studies, the general
enthusiasm had started to diminish, since the U.S. had taken a clear leadership in
the space race with several manned missions to the moon.

Meanwhile, I had made an experience that may be similar to that of a musician
or of a chess player who realises that there are limits to his talent: sufficient for a
good performance but not for championship. Such was the case with my mathe-
matical capabilities. Therefore, after finishing my physics studies I turned to liter-
ature and science journalism, whereas my mathematically more gifted fellow
student Gerhard Ecker set out to make a career in theoretical particle physics.

Thus, we embarked on separate ways, leading into the “two cultures” that the
British writer and diplomat C. P. Snow had diagnosed in about the middle of last
century: one characterised by literature and the humanities, the other by technology
and science. Snow deplored the gap between the two cultures. In particular, he
criticised that an intellectual would be despised if he did not know the trendy
writers but that he did not have to know what entropy is. The mathematician
Edmund Hlawka from the University of Vienna once had formulated a similar
thought in an introductory lecture on calculus: “If people declare that they love
Shakespeare and one of us answers that he prefers Pilsen beer he is considered an
ignorant, but nobody cares what the derivative of a function is”.

Snow’s proposition of the two cultures has been disputed but it corresponds to
my experiences as a “borderline case”. My work as a science journalist consists
mainly in moving back and forth between the two cultures and providing transla-
tions between the mathematically expressed findings of physics and the everyday
language of literature and philosophy.

Snow formulated his hypothesis against the historical background of the Cold
War and the Sputnik shock. His concern was actually a warning: if Europe would
continue to favour the traditional classical-humanist ideals disregarding science, it
would soon fall back behind the Soviet Union and the U.S., which produced
mathematicians, scientists and engineers in great numbers. Nowadays, this concern
is all water under the bridge. Today the gap between the cultures has become much
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smaller, and sometimes one talks about a “third culture” as a bridge. But in my
view, the gap is not completely closed.

With the present book, Gerhard Ecker attempts to convey to the interested
reader, from whatever culture he may come, ideas and results of modern physics in
the best possible way. This involves some formulas but it only requires high school
mathematics in addition to a good portion of curiosity. In the second half, the author
goes considerably beyond what other books have to offer on quantum mysteries,
Schrödinger’s cat and spooky actions at a distance. He also goes beyond what he
and I had heard in lectures during our studies. At that time, quarks were still
hypothetical objects or “purely mathematical entities” as their inventor would call
them. Today quarks (and gluons) are constituents of the modern theory of strong
interactions, and the author uses his experience with quantum chromodynamics to
introduce the reader to present-day particle physics.

I very much envy him for an experience of success that most theoretical
physicists rarely make in their lifetime. In 1987, he and his collaborators used
quantum field theoretic methods to predict details of an exotic particle decay that
were later confirmed in accelerator experiments. Such achievements encourage the
theoreticians that their work is not simply an intellectual game but that it approaches
a reality that has been unfolding since the Big Bang. The great successes and the
many open questions this book describes illustrate how immensely complicated
nature is and nevertheless how much we already understand of it.

Aachen, Germany
September 2018

Michael Springer
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Preface for the English Edition

The book presented here is essentially the English translation of my book
“Teilchen, Felder, Quanten” published by Springer-Verlag in July 2017. A few
small updates take into account recent developments in particle physics. In addition,
glossary, index and especially the bibliography have been enlarged compared to the
German version.

In the public perception of particle physics, the giant accelerator LHC at CERN
dominates. In comparison, the theoretical foundation often remains in the dark and
this of course is mainly due to the missing background. This book is an attempt to
enable the high school graduate, the physics student in the first semesters, the
physics teacher and in general all those interested in physics to retrace the devel-
opment of fundamental physics during the past 120 years. Here, “fundamental
physics” stands for the physics of the smallest structures of matter and their
interactions.

Some readers of the German version have criticised my claim that this book can
be understood with a knowledge of basic mathematics at the level of the upper
secondary syllabus. While I still maintain my claim, I am of course aware that even
many people interested in science will have forgotten some or most of their high
school math depending on how many years have passed since graduation. To those
putting the book aside after encountering the first formula, I can only ask to give it a
second try after reading Appendix A. In addition, I encourage my readers to read
the enlightening foreword by Michael Springer for a start.

The beginning of the acknowledgements is dedicated to the memory of my
teachers Richard Lederer and Walter Thirring who shaped my approach to physics
more than I was probably aware during my school and university years. During
more than 50 years of my active preoccupation with physics, many more teachers,
colleagues and students have accompanied and influenced me, by far too many to
be listed here. I thank my family, relatives and friends for their encouragements to
write this book. Among the latter is Michael Springer, schoolmate and fellow
student, who accompanied the genesis of this book from the beginning to the end
and who wrote an inspiring foreword. Special thanks are due to Robin Golser and
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Martin Fally, Deans of the Faculty of Physics of the University of Vienna, for
allowing me to use the infrastructure of the faculty even after retirement. Last but
not least, I thank Stefanie Adam, Lisa Edelhäuser and Lothar Seidler from
Springer-Verlag for their efficient support.

Vienna, Austria
September 2018

Gerhard Ecker
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1Introduction

VictorWeisskopf, one of the grand-masters of the communication ofmodern physics,
sometimes criticised that many presentations tend to concentrate on the most recent
developments, which does not necessarily lead to a deeper insight. In this spirit,
superstring theory or quantum gravity will hardly play a role in this book. Instead, the
development of modern physics from the beginning of the quantum era around 1900
to the radical breakwith classical physics through quantummechanics, its unification
with the special theory of relativity to quantum field theory up to the StandardModel
of particle physics, themost comprehensive theory of physics to date,will be outlined.
Following Albert Einstein’s motto that one should treat matters as simply as possible
but not simpler, we will have to introduce some basic mathematical formalism. The
statement of Ernst Mach towards the end of the 19th century that a man without at
least a rudimentary education in mathematics and science is only a stranger in this
world, is politically completely inappropriate today, but it may serve as an incentive
nevertheless.

Although quantumfield theory, the theoretical tool of the particle physicist, is built
on quantummechanics, neither in scientific papers nor in popular accounts of particle
physics will one easily find a hint as to which interpretation of quantum mechanics
the particle physicist in question prefers. Whether he adheres to the Copenhagen
interpretation or to the many-worlds theory or to any other variant, simply does not
matter for his everyday work. Recently, the Italian particle physicist Stefano Forte
has considered this issue in some detail. His treatise (Forte 2014) can especially
be recommended to the philosophically inclined but also to the simple “quantum
engineer” (©John Bell).

Instead of profound philosophical considerations we are going to examine a con-
crete example from the daily work of a particle physicist. For this purpose, the
experimental and theoretical investigation of a particle decay is especially suitable.
In contrast to an (elastic) scattering process, there is neither a classical limit for a

© Springer Nature Switzerland AG 2019
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2 1 Introduction

decay,1 nor can a decay be treated in the framework of quantummechanics (Chap.4).
The theoretical analysis of a decay requires quantum field theoretical methods.

In general, an unstable particle has several decay channels, i.e. different final states
towhich it can decay. In addition to the lifetime of the particle, the relative probability
of the decay into a definite final state is of interest. This dimensionless quantity is
called the branching ratio of the specific decay. For a two-body decay when there
are exactly two particles in the final state, this is actually the only quantity of interest
that can be calculated and measured. More interesting for the following discussion
is a many-particle decay. Therefore, we consider the decay of the neutral, long-lived
K meson into a neutral pion and two photons: K 0

L → π0γγ. Here, long-lived is a
relative notion as the lifetime of K 0

L is only about 5 · 10−8 s, but the K 0
S is even

shorter-lived. The branching ratio for the decay K 0
L → π0γγ is about 1.3 · 10−6,

i.e., on average only one out of a million K 0
L decays in this way. More interesting

for our purposes is another quantity, the invariant mass of the two photons in the
final state. This invariant mass can be calculated from the energies and momenta of
the two photons2 and it has the big advantage that it is independent of the reference
system and therefore Lorentz invariant (Chap.2, AppendixB). In other words, we do
not have to specify how fast the original K 0

L mesons were before decaying. This is of
course a considerable advantagewhen comparing the results of different experiments
among themselves and with theoretical predictions.

The experimenters display their results in so-called histograms as shown inFig. 1.1
for the decay in question. Since in a given experiment only a finite number of decays
can be observed, it is useful to divide the kinematically allowed range for the invariant
mass (denoted m34 in the specific case) on the abscissa into discrete intervals and
to investigate how many decays occur in a specific interval. The number of these
decays is then indicated on the vertical axis. In this way one obtains the typical box
structure of histograms as in Fig. 1.1. These boxes are called bins by the physicists.
It is up to the experimenter how many bins (s)he uses. However, the total number of
decays measured suggests an optimal number of bins.3

A fundamental aspect of quantum physics can now be examined in this decay.
If the experimenters on this side of the Atlantic (CERN, Geneva) and on the other
side (Fermilab, Batavia near Chicago) had compared – which they almost certainly
did not do –, into which bin their first decay event fell, they very probably would
have found (taking the rather big number of bins into account) that these two events
correspond to two different bins. The decay of a particle is a random event. Therefore,
this difference for the respective first decays does not imply that there is a European
and an American version of the Standard Model leading to different results. If in the
quantum field theoretical description of this decay the infamous “hidden parameters”
were missing, a “complete” description would have to be both time- and location

1In the classical limit the particle in question simply does not decay.
2If Ei , �pi (i = 1, 2) are the energies and momenta of the two photons, the invariant mass of the two
photons is defined as follows: minv = √

(E1 + E2)2 − ( �p1 + �p2)2c2/c2 (c is the speed of light).
In Fig. 1.1 the invariant mass is denoted as m34.
3In the two histograms in Fig. 1.1 the number of bins is obviously different.
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Fig.1.1 Decay distribution in the invariant mass m34 of the two photons in the decay K 0
L → π0γγ.

Left plot: histogramof theNA48-Collaboration (CERN) (FromLai et al. 2002;with kind permission
of © Elsevier 2002. All Rights Reserved). Right plot: histogram of the KTeV-Collaboration (FNAL)
(FromAbouzaid et al. 2008; with kind permission of ©American Physical Society 2008. All Rights
Reserved). Theoretical prediction: red curve (left plot), black curve (right plot)

dependent to explain the first decays at CERN and at Fermilab. Maybe mythology
could provide such a complete description, but not a universal science.

The second decay in each experiment is almost as inconclusive as the first one,
but in the course of time the bins get more and more populated and the two his-
tograms begin to resemble each other more and more. On the other hand, with
the quantum field theoretical methods of the Standard Model one can calculate a
(continuous) probability distribution that can be projected onto the bins chosen by
the experimenters. This distribution is also displayed in the two plots of Fig. 1.1.
It had actually been calculated already before the experimental verification (Ecker
et al. 1987). The agreement between the theoretical prediction and the experimental
results allows us to claim that we “understand” the distribution in the invariant mass
of the two photons in the decay K 0

L → π0γγ in the framework of the Standard
Model, not more, but also not less.

Our decay can also serve as an illustrative example for the many-worlds interpre-
tation of quantum mechanics (Everett 1954). For the apostles of Everett, the appear-
ance of the first or of any decay in a certain bin only means that in other worlds
this decay could occur in other kinematically allowed bins. Those other worlds are
causally disconnected from our world. Therefore, no information can be exchanged
between different worlds à la Everett. Most experimenters are probably unaware that
in choosing his bins the physicist can be viewed as a sort of demiurge, a creator of
worlds. As long as we cannot communicate with the other worlds, this interpretation
can at least not do any harm. On the other hand, it tells us nothing about the structure
of matter and interactions.



4 1 Introduction

Advances in our knowledge of the structure of matter and of its interactions are
sometimes exemplified with the help of the so-called quantum ladder, a concept
often used by Victor Weisskopf. This ladder stands on the foundations of classical
physics. The actual quantum ladder starts with the first rung corresponding to atomic
physics and its theoretical basis quantum mechanics. From the first step upwards the
quantum connection between available energy and resolution holds. As we step up
the ladder, the characteristic energy increases and with it the resolving power of ever
smaller structures. At a given step, i.e. with the energy corresponding to this step, we
can only resolve structures at this and all lower rungs. Even if it should turn out one
day that the matter particles leptons and quarks are composed of more fundamental
constituents, we will not need to know this possible substructure of leptons and
quarks in order to understand the hydrogen atom. The theoretical description reflects
this basic fact. Nuclear physics and the structure of atomic nuclei in terms of protons
and neutrons (nucleons) are located on the next-higher rung. Particle physics still
one step higher enabled the resolution of the substructure of nucleons with quarks
and gluons as constituents. Moreover, particle physics led to the realisation that the
three fundamental interactions of themicrocosm (electromagnetism,weak and strong
nuclear forces) can all be described in terms of gauge theories in the framework of
the Standard Model. A possible higher rung is still hidden in the clouds. Whether
there is such a higher rung and what it might look like, will be discussed at the end
of this book.

In Chap.2 some of the problems of classical physics towards the end of the 19th
century will be discussed. The quantum era starts in the year 1900 with Planck’s
radiation law. In that chapter we also review the special theory of relativity, which,
although not relevant for quantum mechanics, will be essential for quantum field
theory. Starting from the stability problem of Rutherford’s model of the atom, Bohr
presents his planetarymodel of the atom in 1913.As intuitive as itmay appear, Bohr’s
atomic model is only an intermediate step on the way to quantum mechanics that we
retrace in Chap.3. The two versions of quantum mechanics put forward in 1925/26,
Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics, turned out to be
equivalent. In addition to the Schrödinger equation we also “derive” the uncertainty
relation and discuss its interpretation. Introduction of the spin of the electron leads
to the Dirac equation, the relativistic generalisation of the Schrödinger equation. The
Dirac equation suggests the existence of antimatter and it explains the fine structure
of the hydrogen atom. Causality is violated in quantum mechanics, which even in
the relativistic form of the Dirac equation can only be applied to processes where
particles are neither created nor annihilated. We perform the crucial step for particle
physics from quantum mechanics to relativistic quantum field theory in Chap.4.
Quantum field theory explains the connection between spin and statistics (bosons
vs. fermions) and it allows for the derivation of the fundamental CPT theorem. The
crucial role of symmetries in particle physics will also be discussed in the framework
of quantum field theory.

Quantum electrodynamics (QED) is introduced in Chap.5. It is the quantum ver-
sion of Maxwell’s electrodynamics describing the interaction between charged par-
ticles and the quantised electromagnetic field. Historically, QED is the first example



1 Introduction 5

of a gauge theory. For the comparison between theory and experiment, S-matrix
elements are calculated, the quantum field theoretical analogue of the nonrelativistic
wave function. The calculations are performed in the framework of perturbation the-
ory, an expansion in powers of the fine-structure constant.We introduce the graphical
representation of S-matrix elements in terms of Feynman diagrams, with application
to the Compton scattering of photons on electrons. The calculation of the anomalous
magnetic moment of the electron up to the fifth order is one of the triumphs of the
perturbative treatment of QED. The crisis of quantum field theory, in particular of
QED, in the 1930s and in the first half of the 1940s is treated in Chap.6. This crisis
was caused by the divergences (infinities) of perturbation theory occurring in most
processes beyond lowest order. The solution of the crisis was based on a manifestly
Lorentz invariant perturbation theory and on the concept of renormalisation. After
renormalisation the unknown structure of the theory at shortest distances and highest
energies is only contained in masses and coupling constants, which must therefore
be determined experimentally. We also comment on the originally widespread skep-
ticism towards the renormalisation program. In Chap.7 we retrace the developments
from the nonrenormalisable Fermi theory of the weak interaction to the unified elec-
troweak gauge theory. Gauge symmetry and its spontaneous breaking are the key
elements of this unification. Parity violation of the weak interaction is discussed in
detail. The strong interaction is covered in Chap.8. Until the beginning of the 1970s
a perturbative treatment of the strong interaction seemed hopeless. Experimental
indications pointing towards a weakening of the strong force at high energies and the
discovery of asymptotic freedom in non-abelian gauge theories paved the way for
quantum chromodynamics (QCD) that can be treated perturbatively at high energies.

The electroweak gauge theory and QCD together constitute the Standard Model
of fundamental interactions treated extensively in Chap.9. The evidence for exactly
three generations of fundamental fermions (leptons and quarks) is discussed. The
simplest mechanism for the spontaneous breaking of electroweak gauge symmetry
seems to be realised in nature as indicated by the discovery of the Higgs boson in
2012. Although the Standard Model presently agrees with all experimental results
even at the highest LHC energies, most particle physicists are convinced that the
Standard Model cannot be the final theory of the fundamental interactions. The
discovery of neutrino oscillations requiring at least two massive neutrino types is
a first indication for an extension of the Standard Model. This phenomenon and
additional arguments for an underlying structure such as grand unification are treated
in Chap.10. The grand unification of strong, electromagnetic and weak interactions
would allow for a deeper understandingof the structure of themicrocosm, but tangible
experimental findings such as proton decay are still missing. In the final Chap.11 we
collect experimental and theoretical approaches for finding hints for “New Physics”
beyond the Standard Model. For this purpose we survey some promising projects of
experimental high energy physics. The Standard Model most probably needs to be
modified at higher energies. It is therefore viewed as an effective quantumfield theory
valid at presently available energies. The concept and applications of effective field
theories also at lower energies conclude this final chapter. AppendixA contains some
mathematical structures used in the book. The system of units generally adopted in
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particle physics and some orders of magnitude are also reviewed in AppendixA.
Gauge and Lorentz transformations are discussed in some detail in AppendixB.
AppendixC contains keyword-type biographies of scientists cited in the text. A
glossary and an index conclude the book.
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2PhysicsAround1900

Physics Before 1900

In the second half of the 19th century the world of classical physics was still in order.
Thiswas spelled out by the physicist Philipp von Jollywho in 1874 advised the young
Max Planck against studying theoretical physics (Planck 1933): “Physics is a highly
developed and nearly fully matured science …There may still be a speck of dust or
a vesicle here and there that needs investigation but the system as a whole is rather
well established. Theoretical physics notably approaches the degree of perfection
that geometry for instance has been enjoying for centuries.1”

Based on the scientific insights of Galileo Galilei and Johannes Kepler, Isaac
Newton performed the first great synthesis of physics in his opus magnum “Mathe-
matical principles of physics” (1687). The fall of his famous apple from a tree and
the planetary orbits obey the same universal law of gravitational attraction. Espe-
cially by Joseph-Louis Lagrange at the end of the 18th century and then by William
Hamilton in the first half of the 19th century, classical mechanics was given its final
form.

Newton’s authority also manifests itself in the development of the theory of light.
Since Newton had declared light to be composed of small particles, the competing
wave theory disappeared from the scene for about 100 years. But at the beginning of
the 19th century clear indications for the wave nature of light (interference, diffrac-
tion, polarisation) appeared. In parallel to those discoveries, the manifestations of
electricity and magnetism were investigated. The second great synthesis of physics
was carried out in 1864 by James Maxwell who followed up the concepts of electric
andmagnetic fields byMichael Faraday. In his theory of electromagnetism (Maxwell
equations, AppendixB) he combined three main areas of physics: electricity, mag-

1Translation from the original German by the author.
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netism and optics. The experimental demonstration byHeinrich Hertz that both radio
waves and light are electromagnetic waves differing only in their wave lengths was
instrumental for the general acceptance of Maxwell’s theory.

Towards the end of the 19th century most physicists therefore shared the view
that the fundamental laws of physics were known and that future generations would
only have to apply those laws. Less known than the previously quoted advice of
Planck’s teacher but all the more surprising is the opinion of the American physicist
Albert Michelson from 1899 (cited in Teich and Porter 1990): “The more important
fundamental laws and facts of physical science have all been discovered, and these are
sofirmly established that the possibility of their ever being supplanted in consequence
of new discoveries is exceedingly remote.” This is all the more surprising as the
experiment of Michelson and Morley from 1887 dealt a fatal blow to the ether as
carrier of electromagnetic waves. Nearly 20 years later this was an experimentum
crucis for Albert Einstein to put forward his special theory of relativity.

However, more and more “vesicles” if not cracks began to show up in the grand
architecture of classical physics.

• In the debate on the physical reality of atoms (Ernst Mach: “Have you ever seen
one?”) the atomistic view, advocated especially by Ludwig Boltzmann, began to
prevail.

• In spite of a lot of negative evidence, the ether as carrier of electromagnetic
waves was seemingly hard to kill. Because of the experimental evidence it had
to be equipped with strange properties such as the shortening of measuring rods
moving relative to the ether (Lorentz contraction).

• The structure of atomic spectral lines was a complete puzzle for classical physics.
Already in 1885 Johann Balmer had discovered empirically a formula for the
spectral lines in the visible spectrum of the hydrogen atom, generalised three
years later by Johannes Rydberg. The inverse wave lengths were found to obey
the following equation:

1

λnm
= R

(
1

n2
− 1

m2

)
, n ≥ 1, m ≥ n + 1 . (2.1)

R is an empirical constant (Rydberg constant) that would find its explanation in
Bohr’s atomic model and then in quantum mechanics. The Balmer series corre-
sponds to n = 2. The formula (2.1) was later experimentally confirmed for n = 1
(Lyman series, ultraviolet spectrum), n = 3 (Paschen series, infrared spectrum),
etc. The energy levels of the hydrogen atom are displayed in Fig. 2.1.

• Already in 1892 Hendrik Lorentz had predicted the splitting of spectral lines in
a homogeneous magnetic field. A few years later Pieter Zeeman confirmed this
splitting experimentally, but the splitting was substantially bigger than predicted
by Lorentz. Lorentz himself found the explanation. The Lorentz force on moving
charges in a magnetic field does not act on the atom as a whole but instead on the
electrons discovered shortly before. In comparison with the atom, the mass of the
electron is much smaller and this explains the size of the Zeeman effect because
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Fig.2.1 Energy levels and spectral series of hydrogen. The energy of the levels is given in eV . The
energy of the ground state with principal quantum number n = 1 is −13.6eV (Eq. (3.10)) (From
Demtröder 2010; with kind permission of © Springer-Verlag Berlin/Heidelberg 2010. All Rights
Reserved)

the magnetic moment relevant for the splitting is inversely proportional to the
mass (Eq. (5.5)). However, this only explained the so-called “normal” Zeeman
effect (splitting into three lines), the much more frequent “anomalous” effect can
only be understood in the framework of quantum mechanics due to the spin of
the electrons. From today’s point of view the terminology is a historical curiosity.
The “normal” effect is a special case of the more general “anomalous” effect for
total spin zero of the electrons.

• On the basis of his experimentswith cathode rays, J. J. Thomson in 1897postulated
the existence of “corpuscles”, which were subsequently renamed electrons by
Lorentz.

• In 1896HenriBecquerel discovered amysterious radiation thatwas called radioac-
tivity byMarie and Pierre Curie and investigated by them in detailed experiments.
Soon one distinguished betweenα, β and γ rays. Ernest Rutherford and Frederick
Soddy realised in 1902 that radioactivity has to do with the emission of particles
from the atomic nucleus obeying the radioactive decay law. α rays (emission of
helium nuclei) and β rays (emission of electrons) also involve a transmutation of
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elements.2 It was obvious that this type of radiation could not be explained in the
framework of classical physics.

Beginning of the Quantum Era

There is general agreement among physicists that the year 1900 marks the begin-
ning of the quantum era. In that year Planck presents the correct formula for the
energy spectrum of a black body. The black body is a typical idealisation of theoreti-
cians standing for an object that completely absorbs and maximally emits elec-
tromagnetic radiation. The spectral energy density3 η(ν) in the black body can
be derived from classical electrodynamics for small frequencies4 ν. The result5

(k = 1.38064852(79) · 10−23 J(oule)/K(elvin) is the Boltzmann constant, T the
absolute temperature in K)

η(ν) = 8πkT

c3
ν2 (2.2)

is known as the Rayleigh–Jeans law. The spectral density (2.2) becomes arbitrarily
large for large frequencies (small wave lengths), an absurd result deserving the name
ultraviolet catastrophe. Wilhelm Wien observed empirically that the formula (2.2)
has to be replaced for large frequencies by

η(ν) = aν3e−bν/T , (2.3)

with two parameters a, b to be determined experimentally. In October 1900 Planck
presents an empirical interpolation formula that reads in today’s notation

η(ν) = 8πhν3

c3
1

ehν/kT − 1
, (2.4)

with an a priori undetermined constant h. In December of the same year Planck
submits a theoretical justification for his radiation law (Planck 1901): the exchange
of energy in the black body can only happen in packages of size E = hν. Since
then the constant h = 6.626070040(81) · 10−34 J s is known as Planck’s con-
stant. For Planck only the energy transfer but not the radiation itself was quantised.

2Soddy: “Rutherford, this is transmutation!”; Rutherford: “Don’t call it transmutation. They’ll have
our heads off as alchemists.” (Cited in Howorth 1958).
3Integrating the spectral density over all frequencies, one obtains the total energy density of the
black body.
4As a reminder, frequency ν and wave length λ satisfy the relation λν = c where c is the speed of
light.
5Physical units and the notation for numerical values are explained in AppendixA. Unless speci-
fied otherwise, all numerical values in this book are taken from the Review of Particle Properties
(Tanabashi et al. 2018).
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An actual derivation of the radiation formula (2.4) is only possible with the help of
quantum statistics. For small arguments x the exponential function can be expanded
as ex = 1+ x + · · · . Thus, for small frequencies ehν/kT − 1 = hν/kT + · · · and in
this limit Planck’s formula (2.4) turns into the Rayleigh–Jeans law (2.2). This deriva-
tion also shows that (2.2) is the classical limit (h → 0) of (2.4). The derivation of
Wien’s law (2.3) is even simpler if one recalls that for large frequencies ehν/kT � 1.

To get a feeling for the orders of magnitude involved, we consider small oscil-
lations of a pendulum with mass 0.1kg and length 1m. The product of the average
energy 〈E〉 of the pendulum and the time duration of an oscillation τ is then given
by 〈E〉τ ∼ 1034 h ϕ2

0 where ϕ0 is the maximal deflection angle. The action of the
pendulum is therefore larger than Planck’s constant h by so many orders of magni-
tude that one can safely neglect all quantum effects. At the same time we observe
that energy × time and incidentally also length × momentum have the dimension of
an action.

In 1905, the annus mirabilis of physics, Einstein publishes four ground-breaking
articles in Annalen der Physik. The first of those papers provides an interpretation of
the photo effect (Einstein 1905a) with the hypothesis of light quanta.6 In the photo
effect electrons are extracted from the surface of metals by shining short-wave light
on the surface. The experimental results disagreed with the classical wave theory
of light. For instance, the kinetic energy of the emerging electrons does not depend
on the intensity of the radiation but only on the frequency of the light. The minimal
frequency for extracting electrons depends on the material of the metal surface.
Einstein went beyond the ideas of Planck and postulated that light itself consists
of discrete quanta with energy E = hν, which release the electrons in elementary
processes.With this hypothesis all phenomena of the photo effect could be explained.
Moreover, since there also exists unambiguous evidence for the wave nature of light
we are confronted for the first time with wave-particle duality. The photo effect is
therefore a key experiment for the foundation of quantum physics. For his hypothesis
of light quanta, Einstein received the Nobel Prize of 1921.

To illustrate the relevant orders of magnitude, let us consider light from the sun.
The sun light impinging on the earth with a clear sky corresponds to about 4 · 1021
photons/m2 s (i.e. per square meter of the earth surface and per second). The human
eye, on the other hand, reacts already to much smaller photon fluxes. The evolution
ensured that our eyes are especially sensitive to the part of the electromagnetic
spectrum corresponding to sun light. The maximal sensitivity occurs for a wave
length of 555nm. At this wave length a healthy eye adapted to darkness reacts to a
flux of about 10 photons/s. If we had not known anyway, the comparison with the
solar photon flux would have convinced us not to look at the sun with unprotected
eyes.

Already in 1827 the Scottish botanist Robert Brown discovered what came to be
called Brownian motion, the irregular movements of small particles in fluids visible

6Instead of light quanta, Arthur Compton propagated the name photons proposed by the physical
chemist Gilbert Lewis in 1926.
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in themicroscope. Even before 1905 it was clear that this phenomenonwas caused by
irregular thermal movements of even smaller particles colliding continuously with
the particles observed in themicroscope. In his thesis Einstein (1905b) did not remain
at this qualitative level. On the basis of the molecular theory of heat, he made the
quantitative prediction that on average the colliding particle covers a certain distance
whose square is proportional to the observation time and to the temperature and
inversely proportional to the radius of the particle and to the viscosity of the fluid.
This prediction was experimentally confirmed by Jean-Baptiste Perrin during the
following years. This also closed the case of the reality of atoms and the size of the
invisible molecules could be estimated to ∼>10−10 m.

Special Theory of Relativity

Finally, in the last two papers (Einstein 1905c, d) of his annus mirabilis Einstein
formulates the special theory of relativity (SR) that fundamentally changed our per-
ceptions of space and time. Although it did not have any direct influence on the
development of quantum mechanics, which is a nonrelativistic theory, it was of emi-
nent importance for quantum field theory. All experimental observations of the last
110 years show that our world is relativistic. Consequently, our theories of the fun-
damental interactions must be compatible with SR. In the physicist’s terminology
those theories must be Lorentz invariant: the underlying (field) equations remain
unchanged under Lorentz transformations (AppendixB). The corresponding princi-
ple of relativity also exists in classical mechanics. All inertial systems are on equal
footing and therefore the Newtonian equations of motion have the same form in
all inertial systems. These distinguished reference systems are defined in Newton’s
first axiom: there exist reference systems with a universal time (inertial systems)
where in the absence of forces all point particles have constant velocities (uniform
motion along straight lines). Once again, the alleged existence of inertial systems
is a theoretical idealisation. The following reference systems are increasingly bet-
ter approximations to an inertial system: earth, space ship, solar system, system of
fixed stars, …In classical mechanics different inertial systems are related by a class
of transformations (Galilei transformations (B.12)) with the postulated universal or
absolute time. Passing from one inertial system to another differing by a relative
constant velocity �v, all velocities in Newtonian mechanics change by precisely this
velocity �v (law of velocity addition (B.14)). Einstein cuts the Gordian knot of the
ether problem and postulates that the speed of light has the same value c in all inertial
systems. But this is incompatiblewithGalilean invariance because by a proper choice
of the velocity �v in the Galilei transformation one could obtain an arbitrarily large
speed of light. But then also the notion of an absolute time is no more tenable and the
Galilei transformation must be replaced by the Lorentz transformation (B.11). The
dependence of time on the reference system is at the root of almost all conceptual
difficulties of SR such as the twin paradox (see below).
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Lorentz transformations were actually known before Einstein. Henri Poincaré
who also suggested the name gave Lorentz transformations their final form shortly
before the publication of SR (Poincaré 1905). In the same year Poincaré also showed
that Maxwell’s electrodynamics is Lorentz invariant, i.e., the Maxwell equations
(B.1) have the same form in all inertial frames. However, both Lorentz and Poincaré
adhered to the existence of an ether. For them Lorentz transformations defined the
transitions from the special reference system with a stationary ether to all other
reference systems. Thus, physicists before Einstein distinguished between true and
apparent coordinates. The equivalence of inertial systems in SR made the ominous
ether not only unobservable but also irrelevant. Nevertheless one can imagine why
Einstein’s achievements were often put into question, sometimes in connection with
antisemitic undertones.

In his second paper on SR (Einstein 1905d), Einstein investigated the conse-
quences of his requirement that all physical theories must be Lorentz invariant.
Maxwell’s equations for electrodynamics satisfy this condition automatically (it is
not clear whether Einstein was aware of Poincaré’s proof), but Newtonian mechanics
must be modified. One consequence of this requirement is the most famous formula
of physics:

E = mc2 . (2.5)

This relation between the energy and the mass of a particle has often been a source
of confusion. To emphasise that a particle at rest has an energy mc2, this equation
is sometimes written in the form E0 = mc2. For historical reasons, in many school
books and even in some text books themassm is unfortunately replaced by a so-called
rest massm0. In spite of its alleged clarity this rest mass and the related “dynamical”
mass are confusing and misleading.7 Energy and momentum of a particle depend
on the chosen inertial frame just like temporal and spatial coordinates because they
are modified by Lorentz transformations. The mass, on the other hand, is the same
in all inertial systems, it is a Lorentz invariant quantity. This does not imply that
mass cannot change. As nuclear fission, fusion or the annihilation of matter with
antimatter demonstrate, mass can be transformed into energy and vice versa, but such
transformations have nothing to do with different inertial systems. They require the
framework of nuclear or particle physics for a satisfactory treatment.

Before setting off again for the road to quantum mechanics, we briefly deal with
the conceptual difficulties of SR, which mostly have to do with the departure from
Newton’s absolute time. The claim of SR that time progressesmore slowly inmoving
systems than in the rest system of the observer (time dilatation) is admittedly difficult
to swallow. For velocities small in comparison with the speed of light, Lorentz
transformations resembleGalilei transformations. An equivalent formulation,maybe
only for physicists, is that in the limit c → ∞ a Lorentz transformation turns into a
Galilei transformation (AppendixB). In any event it is clear that the most impressive
manifestations of time dilatation will occur for velocities in the vicinity of the speed

7A detailed discussion can be found in Okun (1989).
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of light. This is generically the case in particle physics, which therefore provides the
best examples for time dilatation.

Muons belong to the class of leptons and can be viewed as more massive siblings
of electrons. They are unstable and they decay (in their rest system) with an average
lifetime of τμ 
 2.2·10−6 s. They are generated in the atmosphere by cosmic rays and
as massive particles they are always slower than the velocity of light. Therefore, one
would expect them to decay after a distance of at most cτμ 
 660m. More precisely,
their number should be reduced to the eth part with Euler’s number e 
 2.71828.
In reality, muons reach the surface of the earth even if they are produced at altitudes
as high as 30km. Seen from the earth, muonic “clocks” produced in the atmosphere
seem to be slower and, in fact, considerably slower because the muons travel almost
with the speed of light. Time has no longer any absolute meaning, it depends on the
reference system.

Even more spectacular is the following biologically inoffensive experiment on
the twin paradox. To measure the magnetic moment of muons, they were kept on a
circular trajectory by a magnetic field in the storage ring of the Brookhaven National
Laboratory (Bennett et al. 2006). Again one would naively expect that on average
the muons would have decayed after a distance of around 660 m, which corresponds
to about 7.5 circles in the Brookhaven storage ring. However, since they travel with
almost the velocity of light (v 
 0.99942 c) SR predicts that in the local time of
the experimenter they should only decay (always according to the radioactive decay
law) after

T = τμ√
1 − v2/c2


 29.3 τμ . (2.6)

That corresponds to almost exactly 220 rounds in the storage ring as actually
observed. Incidentally, this is also a very precise measurement of the time dilata-
tion factor 1/

√
1 − v2/c2. What has all of this to do with the twin paradox? If next

to the storage ring the experimenter sets up a normal muon decay experiment with
muons essentially at rest, (s)he will observe that the muons in the storage ring live
29.3 times longer than their stationary siblings. Here the frequent discussion whether
after his return the traveling twin is “really” younger than his sister at home is out
of place. The difference in the lifetimes of the muons is an undeniable experimental
fact.

Rutherford’s Model of the Atom

In the first decade of the 20th century the atom was pictured as a (positively charged)
dough with the (negatively charged) electrons embedded like raisins (Thomson’s
plumpuddingmodel). In the years 1908–1913, JohannesGeiger andErnestMarsden,
following suggestions by Rutherford, performed a series of scattering experiments
with α particles (helium nuclei) impinging on thin foils of gold and other metals.
The main results were the following:
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• Most α particles passed the foils freely.
• The bigger the scattering angle, the fewer particles were scattered.
• One of approximately 8000 α particles was completely back-scattered.

On the basis of these results, Rutherford concluded in 1911 that nearly all the
mass of the atom must be concentrated in the positively charged nucleus with radius

∼>10−15 m. The much lighter negatively charged electrons circle around the nucleus
like planets around the sun to make the atom overall electrically neutral (Rutherford
1911). But since atoms are about 100000 times bigger than their nuclei they must
consist predominantly of empty space. In the following years, the physicist’s percep-
tion of an atom was dominated by Rutherford’s atomic model. However, the model
could not explain the structure of spectral lines nor could it answer the question why
the electrons do not fall into the nucleus.

Following a suggestion by Max von Laue, Friedrich et al. showed that X-rays
were diffracted on crystal lattices (Friedrich et al. 1912), a clear indication for the
wave nature of radiation.Moreover, the diffraction pattern confirmed both the regular
structure of matter and the size of atoms with rAtom ∼> 10−10 m = 1 Å(ngström).
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Bohr’s Atomic Model

Niels Bohr finished his studies at the University of Copenhagen in 1911 with a the-
sis on the magnetic properties of metals. In September of the same year he went
to Cambridge to continue his studies at the famous Cavendish Laboratories with
Thomson. Thomson received him cordially and seemed to be interested in the work
of the young Dane. However, in the literature one can find the cryptic remark that
their communication was hampered by language barriers; maybe Thomson’s knowl-
edge of Danish was only rudimentary …While Bohr still had to grapple with these
difficulties, Rutherford visited Cambridge and reported on his new insights con-
cerning the structure of atoms. Bohr was fascinated by Rutherford and decided to
move to Manchester. To the surprise of many colleagues soon also Rutherford was
quite impressed by Bohr. This was not necessarily to be expected because in general
Rutherford did not have a very favourable opinion of “pure” theoreticians. After all,
he had not needed a theoretician to deduce the structure of atoms from the scattering
experiments in Manchester. When asked why he made an exception for Bohr, he is
reported to have said: “Bohr is different, he is a football player.”

During the four months of his stay in Manchester, Bohr suspected the existence
of isotopes on the basis of experiments in Rutherford’s laboratory, i.e. elements with
the same nuclear charge but with different masses. Rutherford was not convinced and
admonished Bohr not to make speculations without concrete experimental evidence.
It seems that Bohr never openly complained about this discouragement, not even
when Soddy received the Nobel Prize in 1921 for the discovery of isotopes. Instead
he turned to Rutherford’s atomic model and considered especially the problem of
stability. According to classical physics, electrons should lose their energy through
the emission of (synchrotron) radiation and fall into the nucleus. Bohr was convinced
that the solution of this serious problem was related to the quanta of Planck and
Einstein. In the spring of 1912 he set to work and published his results (Bohr’s
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atomic model) finally in 1913 in three articles in the Philosophical Magazine (Bohr
1913).

Besides the problem of stability, theorywas also facedwith the question of the size
of atoms. Experiments had already answered the question (∼>10−10 m), but theory
was still lagging behind. For a first attempt one could try to combine the classical
parameters e (elementary charge), me (mass of the electron) and c (speed of light)
to construct a quantity with the dimension of a length. Up to a numerical factor,
this length is unique. One possibility is to equate the absolute value of the potential
energy of an electron in the hydrogen atom with its rest energy1:

e2

4π r
= me c

2. (3.1)

The length resulting from this formula,

rcl = e2

4πme c2
� 2.8 · 10−15 m, (3.2)

is called the classical electron radius and it has obviously nothing to do with the size
of the hydrogen atom. The term classical electron radius is still used because after
all Planck’s constant does not appear in Eq. (3.2). However, it is highly misleading
since at distances of the order 10−15 m classical physics is no more valid. After this
failure we divide rcl by the fine-structure constant α to obtain again a length that is
known as the Compton wave length of the electron:

rC = rcl/α = �

me c
� 3.9 · 10−13 m . (3.3)

The Compton wave length will play a role in particle physics but it is still too small
for an atomic radius. But dividing by α goes in the right direction and so we try once
more. The result is called the Bohr radius and it is indeed the correct answer for the
size of the hydrogen atom:

rB = rC/α = rcl/α
2 = 4π �

2

mee2
= 0.52917721067(12) · 10−10 m . (3.4)

While both quantities rcl and rC contain the speed of light, rB does not depend on
c. This is a first indication that Bohr’s atomic model is nonrelativistic. Despite our
successful manoeuvring with powers of α the question is legitimate which physical
arguments Bohr used to derive (3.4).

1We use the Heaviside system commonly employed in particle physics (see AppendixA for a
detailed description) where the dimensionless fine-structure constant α � 1/137.036 has the form
α = e2/(4π � c) with � = h/2π.
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In Bohr’s atomic model of the hydrogen atom the electron moves on a circular
orbit around the positively charged nucleus. Therefore, the Coulomb force is equal
to the centrifugal force:

e2

4π r2
= mev

2

r
, (3.5)

where v is the velocity of the electron on its orbit. The angular momentum – more
precisely, its absolute value – is then equal to

L = mev r (3.6)

and it has the dimension of an action! Although unlike Planck and Einstein we are not
concerned with electromagnetic radiation here, Bohr postulated that also the angular
momentum of the electron is quantised:

L = n � (n = 1, 2, . . .) . (3.7)

From (3.5), (3.6) and (3.7) we derive

r = 4π n2�2

mee2
−→ r(n = 1) = rB = 4π �

2

mee2
, (3.8)

and the radius of the innermost circle (ground state of the hydrogen atom) is given
indeed by the Bohr radius rB. Thus, the electron does not come closer to the nucleus
than the Bohr radius and the stability of the H-atom seems to be saved. From the
same equations the velocity of the electron on the nth orbit turns out to be

v = n �

mer
= e2

4π � n
= α c

n
� c , (3.9)

justifying a posteriori the nonrelativistic treatment. Remembering that the total
energy is the sum of potential and kinetic energy, one obtains for the energy of
the electron on the nth orbit

En = mev
2

2
− e2

4π r
= − 1

n2
α2mec2

2
= −ER

n2
� − 1

n2
13.6 eV . (3.10)

This value for the energy is substantially smaller than the rest energy of the electron,
confirming once more the legitimacy of the nonrelativistic treatment. Writing the
ground state energy ER in the form ER = h c R, for the transition from themth to the
nth level (m > n) one obtains a radiation frequency

νnm = (Em − En)/h = c R

(
1

n2
− 1

m2

)
, (3.11)
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corresponding exactly to Rydberg’s formula (2.1). The numerical value of the
Rydberg constant

R = α2mec

2 h
� 1.1 · 107/m (3.12)

agrees with the measured value up to small corrections.
Bohr’s atomic model immediately had resounding success. Although very soon

difficulties showed up, this “old” quantum theory is still popular today because it
is so nicely compatible with our classical picture of electrons moving like planets
around the nucleus in the center. In the following 12 years many physicists, among
them especially Arnold Sommerfeld (hence often Bohr–Sommerfeld model), tried
to remove the deficiencies of the model. In the end, all those attempts were in vain
and the frustration grew. A nice quote describing the general feeling is a remark of
Max Born in a letter to Einstein in October 1921 (Einstein et al. 1969): “Die Quanten
sind eine hoffnungslose Schweinerei.2”

Which were the main problems of the Bohr–Sommerfeld model?

i. Themodel successfully described atoms or ionswith a single electron but it failed
already for the helium atom (two electrons).

ii. The quantisation of angular momentum was confirmed by quantum mechanics
but the angular momentum Lwas too big by the value of � for all stationary states
of the H-atom. In particular, in the ground state (n = 1) L = 0 (and not L = � as
predicted by Eq. (3.7)).

iii. The idea of well-defined electron orbits all in one plane (disk model) is not
consistent with quantum mechanics, which predicts a finite probability density
for the electron everywhere in the atom.Moreover, the planetary picture of Bohr’s
model cannot explain chemical binding.

iv. The anomalous Zeeman effect (splitting of spectral lines in a magnetic field)
could not be explained.

In the years 1912–1914 James Franck and Gustav Hertz carried out experiments
confirming the existence of discrete energy levels (Franck and Hertz 1914). Elec-
trons accelerated by an electric field collide with atoms, thereby losing energy. The
dependence on the acceleration voltage and investigations of the light emitted by
the excited atoms showed that the energy transfer, both emission and absorption,
proceeds in discrete packages, a spectacular support for Bohr’s atomic model and
for quantum theory in general.

About ten years later (1922–1923), Compton confirmed the existence of photons
in experiments scattering light on matter (Compton 1923, Fig. 3.1). Monochromatic
X-rays (i.e. withwell-definedwave length) are scattered on crystals. Differently from
classical electrodynamics, the scattered radiation possesses a greater wave length
than the original radiation. The difference of wave lengths (θ is the scattering angle
in the lab system)

2The quanta are a hopeless mess.
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Fig. 3.1 Schematic
representation of Compton
scattering in the lab system.
A photon with wave length λ
is scattered on an electron at
rest with scattering angle θ.
The relation (3.13)
determines the wave length
λ′ of the outgoing photon
depending on λ and θ

e−
γ(λ)

e−

γ(λ′)

θ

λ′ − λ = h

mec
(1 − cos θ) (3.13)

cannot be explained classically (the classical result is obtained in the limit h → 0),
but it follows directly from energy-momentum conservation if the radiation is rep-
resented by photons. This confirmed the validity of energy-momentum conservation
also in the atomic domain, which had sometimes been questioned.

Matrix andWaveMechanics

By the early 1920s, wave-particle duality for electromagnetic radiation was estab-
lished definitively. In a remarkable thesis, Louis de Broglie proposed the hypothesis
that this duality should also hold for matter particles so that for instance an electron
would also exhibit wave properties (de Broglie 1925). Specifically, a matter parti-
cle with momentum �p would have a corresponding wave length λ = h/|�p|. Before
looking closer at the motivation for this hypothesis, let us consider the magnitude
of the wave length of an electron with the typical energy of 1eV. For a nonrela-
tivistic electron energy and momentum are related as E = �p 2/2me. The de Broglie
wave length of an electron with energy 1eV is therefore λ � 1.2 nm = 12 Å. Con-
sequently, de Broglie proposed to look for diffraction patterns in the scattering of
electrons on crystals, in analogy to the diffraction of X-rays by von Laue. To be able
to verify diffraction, the de Broglie wave length must be comparable to or smaller
than the lattice spacings in the crystal. In 1927 Clinton Davisson and Lester Germer
performed an experiment scattering electrons with an average energy of 54eV on a
nickel crystal (Davisson and Germer 1927). They could indeed detect an interfer-
ence pattern where the maximal intensities occurred for scattering angles fulfilling
the Bragg equation that William Bragg had originally established for the diffraction
of X-rays on crystals. Thusmatter waves were confirmed experimentally. In the same
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year, George P. Thomson (son of J. J. Thomson) and Alexander Reid also observed
diffraction phenomena in the scattering of electrons on thin celluloid films (Thomson
and Reid 1927).

Let us now look in more detail at the considerations of de Broglie that played
a decisive role in the further development of quantum mechanics, especially for
the formulation of the Schrödinger equation. It must be emphasised right from the
start that the following arguments should in no way be considered as a derivation
of quantum mechanics from classical physics. Quantum theory constitutes a radical
breach with classical physics and the founding fathers were using analogies like
the following in groping for the final theory. This procedure was originally called
correspondence principle by Bohr.

However, for the following analogies – one can also call them speculations – some
knowledge of basic mathematics is needed, though not going beyond the upper sec-
ondary level syllabus (see also AppendixA). According to Galilei, the book of nature
is written in the language of mathematics. Einstein provided the appropriate verdict:
“One should treat matters as simply as possible but not simpler.” Nevertheless, the
remainder of this chapter as well as the whole book should also be understandable
without the following mathematical fragments.

Starting point is a classical electromagnetic wave in the vacuum, a solution of
the free Maxwell equations (AppendixB). Each such wave, denoted in general as
a wave packet, can be decomposed into a superposition (Fourier decomposition)
of plane waves. For this reason, the plane wave is especially popular with theo-
reticians, described mathematically in terms of trigonometric functions (sine and
cosine). Cosine and sine are also real and imaginary parts of an exponential function
(AppendixA). Therefore, a plane wave can be written – up to a factor denoting the
amplitude of the wave – as real or imaginary part of the function

ϕ(t, x) = e−i(ω t−k x) . (3.14)

Hereω = 2π ν is the angular frequency andwe restrict ourselves for simplicity to one
space dimension represented by the coordinate x. The wave number k (a wave vector
in three dimensions) is essentially an inverse wave length: k = 2π/λ. In classical
electrodynamics, waves in vacuum are described by real-valued functions. On the
other hand, wave functions in quantummechanics are in general complex. Therefore,
it makes sense to use the complex-valued exponential function in Eq. (3.14) in the
following.

We now interpret (3.14) as wave function of a photon. According to Planck and
Einstein, we then have E = h ν = � ω = h c/λ. As the photon is massless, the
photon momentum is related to the energy by p = E/c (special theory of relativity)
and therefore

p = h/λ = h k/2π = � k . (3.15)

The wave function (3.14) can then also be written as

ϕ(t, x) = e
− i

�
(E t − p x)

. (3.16)
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At this point de Broglie postulates in his thesis that (3.16) also holds for matter
particles, with the energy to be modified appropriately (see below).

Attempting to understand atomic spectra, Wolfgang Pauli concluded that an elec-
tron with givenmomentummust exist in two versions. In addition tomass and charge
there must therefore exist an additional degree of freedom. This leads him in 1925 to
the exclusion principle (Pauli 1925): two electrons with the same quantum numbers
(including the additional degree of freedom) cannot be in the same atomic state. This
ad hoc principle explains the structure of the electronic shells and at the same time
the stability of atoms. There cannot be more than two electrons in the ground state.

Still in the same year Samuel Goudsmit and George Uhlenbeck proposed
(Goudsmit and Uhlenbeck 1925) that the extra degree of freedom postulated by
Pauli is an intrinsic angular momentum (spin). However, the classical picture of the
electron as a rotating sphere is untenable. Therefore, not only the unsparingly criti-
cal Pauli but also Goudsmit and Uhlenbeck were not too sure about their case. But
they were encouraged by their director Paul Ehrenfest at the University of Leiden to
publish their proposal (cited in Uhlenbeck 1976): “You are both young enough to be
able to afford a stupidity.”

In July 1925 Werner Heisenberg hands over a manuscript to his director Born.
The latter characterises the paper in a letter to Einstein as follows: “Heisenbergs neue
Arbeit, die bald erscheint, sieht sehr mystisch aus, ist aber sicher richtig und tief.3”
Heisenberg starts from the assumption that unmeasurable quantities like trajectories
and orbiting times of electrons in Bohr’s atomic model should have no place in a
new theory. Instead he considers with help of the correspondence principle relations
between measurable quantities such as the frequencies of spectral lines. If one would
use Heisenberg’s fundamental paper (Heisenberg 1925) in an introductory course on
quantum mechanics, one would probably find oneself before an empty auditorium
for the following lecture. In this first paper on his so-called matrix mechanics the
word matrix does not even appear. But Born immediately recognizes the underlying
mathematical structure. Together with his student Pascual Jordan, a few weeks later
they not only formulate matrix mechanics but also the fundamental commutation
relations between position and momentum operators. The definitive formulation of
matrix mechanics was then presented at the end of the year by Born et al. (1925).

How can one picture a matrix or the more general concept of an operator in
quantummechanics? Thematrix associatedwith a specific physical quantity contains
(slightly simplified) the complete set of all possible measurements of that quantity.
The actual measurement then determines one of the possible values, in the language
of quantum mechanics by the expectation value of the corresponding operator in a
given state. In the so-called position space an operator is a prescription what to do
with a function like in Eq. (3.16). For instance, the position operator X is simply
represented by multiplication of the function with the coordinate x – we still work
with only one spatial dimension:

3Heisenberg’s new paper that will appear soon looks very mystical but is certainly correct and
profound.
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X ϕ(t, x) = xϕ(t, x) . (3.17)

The momentum operator, on the other hand, is represented in position space by the

differential operator4 P = �

i

∂

∂x
, because (see AppendixA)

P ϕ(t, x) = �

i

∂

∂x
e
− i

�
(E t − p x) = pϕ(t, x) . (3.18)

Let us now apply both X and P to an arbitrary wave function ψ(t, x). Depending on
the order of operations, keeping in mind the product rule for differentiation in the
second formula, one obtains

X P ψ(t, x) = X

{
�

i

∂

∂x
ψ(t, x)

}
= x �

i

∂

∂x
ψ(t, x) (3.19)

P X ψ(t, x) = �

i

∂

∂x
{xψ(t, x)} = �

i
ψ(t, x) + x �

i

∂

∂x
ψ(t, x) (3.20)

and thus5

(X P − P X )ψ(t, x) = [X ,P]ψ(t, x) = i � ψ(t, x) . (3.21)

Since the result is completely independent of the arbitrary wave function ψ(t, x), we
can also write (3.21) with help of the unit operator 1 as an operator relation

[X ,P] = i �1 . (3.22)

Congratulations! You have just “derived” the fundamental commutation relations
between position and momentum operators in quantum mechanics. A little bit later
we will return to the consequences of this relation.

In the beginning of 1926, Pauli published his calculation of the spectrum of the
hydrogen atom on the basis of matrix mechanics (Pauli 1926). Again this calcu-
lation is not necessarily suitable for an introductory course, but it was of great
importance for the general acceptance of matrix mechanics. Immediately after-
wards the next milestone appeared. On January 27 Erwin Schrödinger submitted
his first paper on wave mechanics with the title “Quantisierung als Eigenwertprob-
lem” (Schrödinger 1926a). In that paper not only the Schrödinger equation is intro-
duced but it is also used to calculate the hydrogen spectrum. In comparison with the
still unfamiliar matrix mechanics, Schrödinger orients himself more towards clas-
sical physics. Therefore, the approach to quantum mechanics via the Schrödinger
equation is still simpler even today. After three more articles on wave mechanics,
Schrödinger proves the equivalence of matrix and wave mechanics in the same year
(Schrödinger 1926b). It seems that not only he had been surprised initially: “Bei der

4In the so-called momentum space the roles of X and P would have to be interchanged.
5The square brackets denote the antisymmetric product (commutator) of two operators.
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außerordentlichen Verschiedenheit der Ausgangspunkte und Vorstellungskreise der
Heisenbergschen Quantenmechanik einerseits und der neulich hier in ihren
Grundzügen dargelegten und als “undulatorische” oder “physikalische” Mechanik
bezeichneten Theorie andererseits, ist es recht seltsam, daß diese beidenQuantenthe-
orien hinsichtlich der bisher bekannt gewordenen speziellen Ergebnisse miteinander
auch dort übereinstimmen, wo sie von der alten Quantentheorie abweichen …Das
ist wirklich sehr merkwürdig, denn Ausgangspunkt, Vorstellungen, Methode, der
ganze mathematische Apparat scheinen in der Tat grundverschieden.6” In the same
year, Paul Dirac publishes an abstract formulation of quantum mechanics as “trans-
formation theory” (Dirac 1927), which contains both matrix mechanics and wave
mechanics as special cases. That paper also contains a proof that quantummechanics
turns into classical mechanics in the limit � → 0 as expected.

We can also “derive” the Schrödinger equation using the previously introduced
analogies. We start from the wave function (3.16) and use the relation E = p2/2m
for the energy of a free, nonrelativistic particle with massm. As shown in Eq. (3.18),
the momentum operator in position space is given by the differential operator P =
�

i

∂

∂x
and the square of the momentum therefore by the second partial derivative

P2 = −�
2 ∂2

∂x2
. Thus we can write

E ϕ(t, x) = i �
∂

∂t
ϕ(t, x) = P2

2m
ϕ(t, x) = − �

2

2m

∂2

∂x2
ϕ(t, x) (3.23)

and we have arrived at the Schrödinger equation for a free massive particle in one
space dimension. Returning now to three dimensions and adding to the kinetic energy
a potential V (x, y, z) for the interaction, we obtain the Schrödinger equation in its
general form and in full beauty:

i �
∂

∂t
ψ(t, x, y, z) =

{
− �

2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ V (x, y, z)

}
ψ(t, x, y, z) .

(3.24)

With the Laplace operator� = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
andwith the Hamilton operator (in

position space)H = − �
2

2m
�+V (�r)we can write the general Schrödinger equation7

in the usual compact form

6Given the extraordinary differences of starting points and concepts of Heisenberg’s quantum
mechanics on the one hand and the “wave-like” or “physical” mechanics, recently presented here
with its main features, on the other hand, it is quite strange that these two quantum theories agree
with each other in all presently known results even where they deviate from the old quantum theory
…This is indeed very remarkable because starting point, viewpoints, method, the whole mathemat-
ical apparatus actually seem to be completely different.
7In full generality the potential can also depend on time:V (t, �r).



26 3 The Path to QuantumMechanics

i�
∂

∂t
ψ(t, �r) = H ψ(t, �r) (3.25)

wherewehave collected the space coordinates (x, y, z) in a positionvector�r. This lean
equation, after suitable generalisation for an arbitrary number of particles, accounts
for the whole nonrelativistic quantum physics, chemical binding, large parts of solid
state physics, etc. It couldn’t be simpler!

The triumphal march of the Schrödinger equation was irresistible, but at the same
time Pandora’s box was opened. How should one interpret the mysterious wave
function ψ(t, �r), the solution of the Schrödinger equation? Einstein, de Broglie and
Schrödinger always viewed it classically as a sort of accompanying wave of the
particle. While Schrödinger was convinced all his life that the “quantum theoretical
oddities”were repaired by hiswave equation, the statistical interpretation of thewave
function prevailed more and more, an interpretation first formulated by Born (1926).
The quantum mechanical wave function does not describe a physical wave, but a
“probability amplitude” whose absolute square indicates the probability for finding
the particle in ameasurement for instance at a certain position. InBorn’s paper one can
find a footnote that has acquired a certain fame at least among quantum engineers. On
the basis of a scattering process, Born originally concluded that the wave function
itself is a measure of the probability. A footnote in the publication modifies this
conclusion: “Anmerkung bei der Korrektur: Genauere Überlegung zeigt, daß die
Wahrscheinlichkeit dem Quadrat der Wellenfunktion proportional ist.8” Narrow-
minded colleagues might be tempted to scoff that even a footnote may be worth
a Nobel Prize. The statistical interpretation was supported and further developed
especially by Bohr and his school. In his correspondence with Einstein, Born later
recognized the importance of Bohr’s contributions for the statistical interpretation,
but he also added: “Daß sie überall als Kopenhagener Auffassung zitiert wird, scheint
mir jedoch nicht gerechtfertigt.9” At least Born received in 1954, late but not too
late, the Nobel Prize for the statistical interpretation of the wave function.

At the end of 1926 Pauli writes in a letter to Heisenberg (Pauli 1979): “Man
kann die Welt mit dem p-Auge und man kann sie mit dem x-Auge ansehen, aber
wenn man beide Augen zugleich aufmachen will, wird man irre.10” As usual with
Pauli, the letter did not only contain this sentence but a whole treatise. This explains
Heisenberg’s reaction: “ …, daß Ihr Brief dauernd hier die Runde macht und Bohr,
Dirac undHund uns dauernd darum raufen.11” It seems that Heisenbergwon the fight
in the end because already inMarch 1927 he submits a paper with the title “ Über den
anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik” (Heisen-
berg 1927). In the abstract he says: “ …es wird gezeigt, daß kanonisch konjugierte

8Note added in proof: a more detailed consideration shows that the probability is proportional to
the square of the wave function.
9However, it does not seem to be justified to me that it is generally referred to as Copenhagen
interpretation.
10One can look at the world with the p-eye and one can look at it with the x-eye, but if you want to
open both eyes at the same time you go crazy.
11 …Your letter keeps circulating here and Bohr, Dirac, Hund and I keep fighting over it.
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Größen simultan nur mit einer charakteristischen Ungenauigkeit bestimmt werden
können.12” Canonically conjugate quantities, in particular position and momentum,
are characterised by a commutator of the form (3.22). The physical content of the
famous uncertainty relation is analysed in great detail in Heisenberg’s paper. On the
other hand, the uncertainty relation as an inequality

�x�p ≥ �/2 (3.26)

as known today is not contained in Heisenberg’s paper, mainly because Heisenberg
does not define a precise measure for the uncertainties �x and �p. In common
parlance, the content of the uncertainty relation is often described as “nothing is
known precisely”, which is about as correct as “everything is relative”.

How then should one interpret the uncertainty relation? Let us assume that an
experimenter prepares an experiment that allows him to measure the position and
the momentum of a particle as often as he wishes, i.e., he can reproduce after each
measurement (of position or of momentum) the original starting point of his exper-
iment. For instance, he starts with a series of position measurements. Because of
the statistical character of quantum mechanics the measured values will not all be
the same but they will scatter around a mean value. Mathematicians have defined as
measure of this scatter a quantity that in the case of a position measurement is called
the mean square deviation (�x)2. After the position measurements our experimenter
turns to the momentum measurements and will find a mean square deviation (�p)2.
The uncertainty relation now states that, regardless how precisely the experimentalist
has prepared and performed his measurements and independently how often he has
repeated them, the product �x�pwill always be bigger than or at best equal to �/2.
For instance, he can decide to arrange his experiment in such a way as to measure
very precisely the position of the particle. If he then also measures the momentum
with the same setup, the mean square deviation (�p)2 will be correspondingly big-
ger such that the inequality (3.26) will always be satisfied. Giants of physics like
Einstein have repeatedly tried to find counter-examples to the uncertainty relation,
which in the end were always refuted mainly by Bohr.

The uncertainty relation does not only hold for position and momentum but for
all operators fulfilling the commutation relation (3.22). The corresponding physical
quantities (observables) are referred to as canonically conjugate. The converse is not
true. One can also define a kind of uncertainty relation for energy and time13 and yet
energy and time are not canonically conjugate in the sense of (3.22). This will also
play a role in Chap.4 when trying to bring the canonical commutation relations into
accordance with special relativity.

12…it is shown that canonically conjugate quantities can simultaneously be determined with a
characteristic uncertainty only.
13See, e.g., https://iopscience.iop.org/article/10.1088/1742-6596/99/1/012002/pdf.

https://iopscience.iop.org/article/10.1088/1742-6596/99/1/012002/pdf
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Schrödinger–Pauli and Dirac Equations

At the time when quantum mechanics was formulated, the measurements of spectral
lines were already so precise that one observed definite deviations from the theo-
retical predictions for the energy levels. Schrödinger rightly suspected that this fine
structure has to dowith relativistic corrections to the predictions of the nonrelativistic
Schrödinger equation. We have just seen when “deriving” the Schrödinger equation
that the equation is nonrelativistic. One obvious feature is that the Schrödinger equa-
tion (3.24) is a differential equation of first order in the time but of second order in
the spatial coordinates. Since the Lorentz transformation (B.11) mixes spatial and
temporal coordinates the Schrödinger equation cannot be Lorentz invariant. There
are two options for a relativistic generalisation of the Schrödinger equation: it con-
tains either only first-order derivatives or only second-order ones. Already in 1926
Schrödinger took up the second option and found out that he could not explain the
fine structure of the hydrogen spectrum in this way. He therefore put the project aside
and for that reason the corresponding equation is known as Klein–Gordon equation
today. The main reason for the failure was that there is no place for the electron
spin in the Klein–Gordon equation. The equation is however used successfully in
investigations of pionic atoms where the electron is replaced by a charged pion (with
spin 0). Moreover, the Klein–Gordon equation plays a prominent role in quantum
field theory, in particular for the description of the Higgs field and its quantum, the
Higgs boson.

By including the spin of the electron, Pauli extended the Schrödinger equation to
the Schrödinger–Pauli equation (Pauli 1927). Whereas the orbital angular momen-
tum can only adopt integer multiples of � in quantum theory, the spin can also have
half-integer values, in particular �/2 in the case of an electron. The wave equa-
tion has then two components for the two spin orientations (e.g., spin up and spin
down) and therefore the Schrödinger–Pauli equation is a two-component matrix
equation. However, like the Schrödinger equation the Schrödinger–Pauli equation is
not Lorentz invariant either. But it provides the correct explanation of the famous
Stern–Gerlach experiment14 (Gerlach and Stern 1922). In that experiment a beam
of silver atoms was split up in two separate beams by traversing an inhomogeneous
magnetic field. The two beams were then detected on a screen (Fig. 3.2). According
to the Schrödinger–Pauli equation the relevant quantity is the magnetic moment of
the atom. The silver atom has a single electron in its outermost shell (valence elec-
tron) and this electron has orbital angular momentum zero. In the physics jargon it
is in an S state. Therefore, the total angular momentum of the silver atom consisting
in general of both orbital angular momentum and spin is equal to the spin of the
valence electron in this special case. Thus the magnetic moment is proportional to

14The experiment was performed by Stern and Gerlach in 1922, three years before the actual intro-
duction of spin. At that time it was actually interpreted as strong support for the Bohr–Sommerfeld
model. The history of the experiment and of its reception can be found in Pakvasa (2018).
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Fig. 3.2 Stern–Gerlach experiment. a Experimental setup; b Section through the inhomogeneous
magnetic field; c Blackening intensities on the detector screen with (two peaks) and without (sin-
gle peak) magnetic field (From Demtröder 2010; with kind permission of © Springer-Verlag
Berlin/Heidelberg 2010. All Rights Reserved)

the electron spin. The two possible orientations of the magnetic moment for spin �/2
then explain the splitting into two beams.

Let us return to the relativistic generalisation of the Schrödinger equation. Based
on Pauli’s work, Dirac constructed a relativistic wave equation (Dirac 1928) con-
taining only first derivatives in both spatial and temporal coordinates. In doing so he
noted that for a charged and therefore massive particle15 at least four components of
the wave equation were needed. The Dirac equation is therefore a four-dimensional
matrix equation (Eq. (5.2)) andDirac drew immediately the right conclusion. In addi-
tion to the two components for the electron, two more components are foreseen for
the antiparticle with an opposite (positive) charge to the electron. At that time, the
only candidate was the positively charged proton, whichDirac therefore initially sug-
gested to be the antiparticle of the electron. The objection of Robert Oppenheimer
followed promptly (Oppenheimer 1930). In this case the hydrogen atomwould anni-
hilate immediately and there would not be any stable atoms. In fact, soon afterwards
Carl Anderson detected the correct antiparticle of the electron in cosmic rays, the
positron with the same mass as the electron, but with opposite charge (Anderson
1932).

15All charged particles have nonvanishing mass.
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Fig.3.3 Fine structure of the
hydrogen atom for the
energy levels with principal
quantum number n = 2
(Fig. 2.1) 4.5 · 10−5 eV

2P3/2 (L = 1)

2S1/2 (L = 0)
2P1/2 (L = 1)

Taking the electron spin into account in the Dirac equation also explains the fine
structure of the hydrogen spectrum. This fine structure is a relativistic correction
of order α4 and higher (hence the name fine-structure constant for α), whereas the
Schrödinger equation just like Bohr’s atomic model in Eq. (3.10) predicts only the
leading terms quadratic in α for the energies.

In Fig. 3.3 the fine structure is shown for the energy levels with principal quantum
number n = 2. In the Schrödinger theory the energy only depends on n. In contrast,
the Dirac equation also predicts a dependence on the total angular momentum J , the
sum of orbital and intrinsic angular momenta. In the usual terminology of atomic
physics, the levels are denoted as 2S1/2 (L = 0), 2P1/2 (L = 1) and 2P3/2 (L = 1),
where the indices 1/2, 3/2 specify the values of J (always in units of �). Moreover,
the Dirac equation was also able to completely explain the Zeeman effect (splitting
of spectral lines in a homogeneous magnetic field).

Planck’s radiation formula andEinstein’s photon hypothesis stood at the beginning
of the quantumera.On the other hand, photons do not appear at all inmodern quantum
mechanics whose historical development we have sketched in this chapter. Both in
the Schrödinger and in the Dirac equation only a classical electromagnetic field has
its place. The main problem for a quantum theory of photons is that photons always
travelwith the speed of light. Therefore, any nonrelativistic approximation is doomed
to failure from the very start. The only known successful method is to quantise the
electromagnetic field and this approach was pursued soon after the construction of
quantum mechanics. First successes of this approach, in particular the quantisation
of the free electromagnetic field, were achieved in the second half of the 1920s by
Dirac, Pauli, Born, Heisenberg, Jordan and others. We will return to this issue in
much more detail in the following two chapters.
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Causality and Quantum Fields

Since the beginning of quantum mechanics people have sometimes expressed con-
cern that causality could be violated in quantum mechanics. There exist countless
treatises on the concept and the consequences of causality. For the simple physicist
causality is violated if information can be transmitted with velocities exceeding the
speed of light. Let us consider a free, nonrelativistic particlewithmassm, momentum
�p and consequently with energy E = �p 2/2m. It is a nice exercise for the student of
quantum mechanics to calculate the probability amplitude for the particle to get in a
given time t from a starting point �r0 to an arbitrary point �r . The answer is

A(�r0, �r; t) =
( m

2π i � t

)3/2
e
i m(�r−�r0)2

2� t . (4.1)

Thus, there is a nonvanishing probability, namely the absolute square of the ampli-
tude (4.1), that the particle reaches any point in space in the given time t . Thereby
information could be transferred with a superluminal velocity, albeit with a certain
probability only, and causality would be violated. One could argue that in order to
solve this problem one should better use the relativistic energy-momentum relation
E = √ �p 2c2 + m2c4. The result (Peskin and Schroeder 1995) differs from (4.1), but
the conclusion is the same: causality is violated.

However, surprising is not the violation of causality in quantum mechanics but
that some physicists are still surprised about this conflict with causality. Quantum
mechanics is a nonrelativistic theory (Chap.3) even if one imposes the relativistic
energy-momentum relation. There is no reason why superluminal velocities cannot
occur in quantum mechanics. The situation reminds me of a thought experiment that
Walter Thirring used in his lectures to discuss the generation of superluminal veloc-
ities in the classical mechanics of rigid bodies. Take a very long (!) pair of scissors
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Fig.4.1 Tracks of more than 100 charged particles in the CMS detector at the LHC: proton-proton
collisions at 7 TeV center-of-mass energy (With kind permission of © CERN 2010 for the benefit
of the CMS Collaboration. All Rights Reserved)

and open it. If the scissors are long enough the tips will move apart with a veloc-
ity exceeding the speed of light. As bizarre as this example may seem, it occupied
physicists in a more sophisticated version for some time after 1905 (Ehrenfest para-
dox, Ehrenfest 1909). The solution of the paradox consisted in the simple realisation
that rigid bodies cannot exist in special relativity. Similarly, one has to accept that
causality is violated in nonrelativistic quantum mechanics.

Before we deal with the consequences of this insight, we consider an additional
argument for the necessity of extending quantum mechanics. Somewhat simplified,
theoreticians say that quantum mechanics is a one-particle theory. More precisely,
the framework of quantum mechanics does not allow for processes where particles
are created or annihilated.

In otherwords, in quantummechanics one can verywell study the elastic scattering
of two particles. But inelastic processes that occur regularly in accelerators like the
Large Hadron Collider LHC, where in the collisions of two protons hundreds of
particles are created (Fig. 4.1), are not accessible in quantummechanics as amatter of
principle. The crucial quantity is the available energy in the collision. As soon as that
energy satisfies the condition E > 2mc2, a particle with mass m and its antiparticle
can be produced.1 Such scattering processes, let alone particle decays, require a
relativistic multi-particle theory in contrast to the nonrelativistic one-particle theory
quantum mechanics.

1Particles that are identical with their antiparticles such as the photon or the neutral pion π0 can
also be produced singly.
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The canonical commutation relations (3.22) (generalised to three space dimen-
sions) are also incompatiblewith special relativity. Changing the inertial system, time
and space coordinates are transformed into each other as are energy and momen-
tum (AppendixB). In a first step, one could therefore try to introduce in addition to
position and momentum as in (3.22) also operators for time and energy. We have
encountered such an operator for the energy in the form of the Hamilton operator H
in the Schrödinger equation (3.25). An operator for time has not shown up yet, but
maybe it is worth a try, let us call it T . Compatibility with special relativity requires
then (at least) that also H and T obey the canonical commutation relation

[H, T ] = i �1 . (4.2)

But now we have arrived at an impasse. Position and momentum, whose operators
satisfy the commutation relation (3.22), can adopt any real value between −∞ and
+∞ and there are no discrete position or momentum eigenvalues. It can be shown
that these properties are direct consequences of the canonical commutation relation
(3.22). Therefore, energy and time would have to have the same properties. We
would not have a problem with time in this respect but for the energy this would be
a catastrophe. The energy would not be bounded from below, i.e., there would not
be a lowest energy eigenvalue (instability!), and there would not exist any discrete
energy levels in contradiction to significant achievements of quantum mechanics.

So we really seem to be stuck in a dead end. The relativistic invariance of the
theory requires the same status both for position and time and for momentum and
energy but the four-dimensional form of the commutation relations leads to blatant
contradictions. The onlywayout seems to be to deprive the spatial coordinates of their
operator status and to downgrade them together with time to normal nonquantised
space-time variables. The quantum object that we need of course in a quantum theory
will then depend on those space-time coordinates. The simplest possibility is that
the quantum objects depend on a single space-time point only. Such objects are
called (local) quantum fields. In a relativistic notation, time and space coordinates
are combined in a four-vector x = (ct, �r). The fields (field operators) of relevance
for particle physics are collected in Table 4.1.

In the third column of Table 4.1 only a few representative examples are listed but
the particle zoo of course is much bigger (Chap.9). However, the list of field types is
complete according to the present state of knowledge. In other words, the Standard

Table 4.1 Relevant types of fields in the Standard Model of particle physics. From now on we
denote the spin of a particle simply as spin s instead of the explicit s �, i.e., the factor � is always
implied

Field Type Representative particle Spin

ϕ(x) Scalar field Higgs boson 0

ψ(x) Spinor field Electron 1/2

A(x) Vector field Photon 1
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Model of particle physics contains only scalar, spinor and vector fields. A tensor
field (spin 2) with the hypothetical graviton as particle would require a quantum
field theory of gravity which we still do not have. Fields with spin-3/2 particles
occur in some extensions of the Standard Model such as in supergravity.

A few supplementary remarks are listed here.

i. Incorporating both particle and wave aspects in a quantum field is therefore not
specific for the electromagnetic field, but it applies for all fundamental particles
(quanta): matter particles (leptons and quarks), interaction quanta (photons, W-
and Z bosons, gluons), Higgs boson.

ii. Heisenberg’s commutation relations are replaced in quantum field theory by
commutation or anticommutation relations for quantum fields. Instead of the
less appropriate designation “second quantisation” – in distinction to the first
quantisation in quantummechanics –we speak of field quantisation.Althoughnot
strictly deducible from quantum mechanics, the step from quantum mechanics
to quantum field theory is a small step in comparison with the revolutionary
transformation from classical physics to quantum mechanics.

iii. In contrast to quantum mechanics causality is guaranteed in relativistic quantum
field theories. This appears plausible because all ingredients of the theory are
in accordance with special relativity, but for an actual proof we have to refer to
pertinent textbooks (e.g., Peskin and Schroeder 1995).

iv. Relativistic invariance demands a departure from simple quantummechanics but
local quantum field theory is only the simplest solution. Dirac seems to have
been the first in 1962 to investigate the quantisation of extended objects. In the
following decade string theory was born where one-dimensional objects (strings)
are the fundamental quantities. Especially as superstring theory this approach has
almost become a separate branch of science that in the meantime does not even
shy away from higher-dimensional objects (membranes). However, so far nature
seems to be satisfiedwith quantumfield theory as the basis of the StandardModel.
In any case, up to now there is not a single experimental hint that would support
more exotic avenues.

Spin and Statistics

In June 1924, i.e. even before the birth of quantum mechanics, Einstein receives
a letter from India. A young physicist by the name of Satyendranath Bose asks
Einstein to review the enclosed article “Planck’s law and the hypothesis of light
quanta” and to submit the paper for publication (Bose 1924). In this paper Bose
derives the radiation law starting from the ad hoc assumption that unlike in the clas-
sical Maxwell-Boltzmann statistics photons are indistinguishable particles. Einstein
immediately recognized the importance of the paper that also contains the first quan-
tummechanical formulation of an ideal (Bose) gas. In addition, Einstein generalised
Bose’s ansatz for particles with nonvanishing mass and predicted that a part of the
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ideal gas should condense at low temperatures in the quantum mechanical ground
state (Bose-Einstein condensation, Einstein 1924, 1925). This prediction was exper-
imentally verified only in 1995.

The essential property of particles satisfying Bose-Einstein2 statistics can already
be seen with the quantummechanical wave function of two such particles. This wave
function ψ(�r1, s1; �r2, s2) is symmetric under the exchange of both spatial and spin
coordinates of the two particles:

ψ(�r2, s2; �r1, s1) = ψ(�r1, s1; �r2, s2) . (4.3)

The symmetry property (4.3) cannot be valid for all particles because it contradicts in
particular Pauli’s exclusion principle according to which two electrons cannot have
the same quantum numbers. Independently of each other, Enrico Fermi and Paul
Dirac therefore proposed an alternative statistics (Fermi 1926;Dirac 1926) known
as Fermi-Dirac statistics since then.3 Particles satisfying this statistics are called
fermions, with the electron as most prominent member. In contrast to (4.3), the wave
function of two fermions is antisymmetric:

ψ(�r2, s2; �r1, s1) = −ψ(�r1, s1; �r2, s2) . (4.4)

This condition implies the exclusion principle. If the two fermions have the same
position and spin coordinates, i.e. �r1 = �r2 = �r and s1 = s2 = s, then the condition
(4.4) amounts to ψ(�r , s; �r , s) = −ψ(�r , s; �r , s) and therefore ψ(�r , s; �r , s) must be
identically zero. Two fermions with the same quantum numbers cannot be in the
same state. This has far-reaching consequences that go beyond atomic structure.
For instance, unlike the Bose-Einstein condensate there cannot be a Fermi-Dirac
condensate because the fermions cannot accumulate in the ground state. Another
consequence is the band structure of solids that is based on the Fermi distribution of
an electron gas.

At this point there are at least two questions.

i. Can the theory explain which particles are bosons and which are fermions?
ii. Are there additional possibilities or do Bose-Einstein and Fermi-Dirac statistics

encompass all particles?

To answer these questions, we return to quantum field theory. First attempts for
quantising the free radiation field can be found in the paper on matrix mechanics

2Following Dirac’s suggestion, such particles are called bosons.
3At the end of 1925 Jordan presented a paper to Born asking for publication in Zeitschrift für
Physik where Born was the editor. Shortly afterwards, Born went on an extended trip to the U.S.
and forgot about the paper he had stowed away in his suitcase. Born later (English translation by the
author): “I hate Jordan’s politics but I can never make up for what I did to him. …In the meantime
the Fermi-Dirac statistics had been discovered independently by Fermi and Dirac. But Jordan was
the first.” (Cited in Ehlers and Schücking 2002) Incidentally, Jordan had called his discovery Pauli
statistics.
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by Born, Heisenberg and Jordan (Chap.3). But the first comprehensive treatment
of the quantisation of the radiation field is contained in the paper of Dirac entitled
“The Quantum Theory of the Emission and Absorption of Radiation” (Dirac 1927).
In that paper the name quantum electrodynamics (QED) appears for the first time.
In the following year, Pauli and Jordan formulate the commutation relations for
field operators that take the place of the quantum mechanical commutation relations
(3.22) (Jordan and Pauli 1928). In the same year, Jordan and Eugene Wigner also
establish the quantisation conditions for Fermi fields where anticommutation rules
replace the bosonic commutation relations (Jordan and Wigner 1928). To conclude
this first heroic phase of quantum field theory, in 1929 Heisenberg and Pauli present
the general theory of relativistic quantum fields (Heisenberg and Pauli 1929). This
so-called canonical quantisation of fields is a standard method until today. These
papers also address the problem that through the interaction with the radiation field
the electron acquires an arbitrarily large self-energy. The divergence problemofQED
will occupy the quantum field theoreticians for quite a while and we will come back
to it extensively in Chap.6.

At the end of the 1920s it was clear that photons obey Bose-Einstein statistics
while electrons satisfy the Fermi-Dirac statistics. Moreover, no possibility for a
different statistics emerged in the framework of quantum field theory. Nevertheless,
it took another ten years till a final proof of the spin-statistics theorem that could
explain the experimental findings. On the basis of relativistic quantum field theory
only, Markus Fierz and Pauli proved that all particles are either bosons or fermions
(Fierz 1939;Pauli 1940). The spin of the particle turns out to be crucial: particles
with integer spin (always in units of �) are bosons while those with half-integer spin
are fermions.4 The theorem not only applies to fundamental particles (quanta) but
also to bound states. Today we understand all hadrons, i.e. all “particles” with strong
interactions (Chap.8), as bound states of quarks and gluons. Baryons like protons and
neutrons are to a first approximation bound states of three quarks. Since the quarks
have spin 1/2, baryons have necessarily half-integer spin5 and are therefore fermions.
On the other hand, mesons like the pion are quark-antiquark bound states and are
therefore bosons because they have integer spin.6 But the spin-statistics theorem
also extends to atomic nuclei as bound states of protons and neutrons. Nuclei with
an odd number of nucleons (collective term for protons and neutrons) are fermions,
those with an even number are bosons. The spin-statistics theorem is a cornerstone
of quantum field theory and thus of the Standard Model. All experimental results
of the past 90 years support it. Finally, it should be mentioned that it is essential
for the proof of the theorem that we obviously live in a world with three spatial
dimensions. In two space dimensions that can be relevant in solid-state physics (e.g.,
in the quantum Hall effect) also quasi-particles can exist, which are neither bosons
nor fermions and which are called anyons (Wilczek 1991).

4Group theory tells us that there are no other possible values for angular momentum but integer or
half-integer multiples of �.
5Neither the gluons nor a possible orbital angular momentum can make a difference.
6Particles and antiparticles have the same spin.
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Symmetries and Conservation Laws

Regular structures have always been fascinating. Already the ancient Greeks knew
bodies with maximal symmetry. The five Platonic solids (tetrahedron, cube, octahe-
dron, dodecahedron and icosahedron) are completely bordered by congruent regular
polygons. Kepler discovered the laws of planetary orbits in trying to complete the
harmony of the celestial spheres. In his book “Mysterium Cosmographicum” pub-
lished in 1596, Kepler attempted to relate the five planets known until then (without
earth), Mercury, Venus, Mars, Jupiter and Saturn, to the surfaces of the five Platonic
solids.

In the 19th century themodern view of symmetries in physics evolves as the group
of space-time transformations that leaveNewton’s equations ofmotion unchanged. In
the last sentence the word “group” is not accidental. Symmetry transformations form
a group in themathematical sensewhere the essential property of a symmetry group is
that the result of two successive transformations is again a symmetry transformation.
A simple example are the spatial translations. Two successive translations may of
course be replaced by a single one.

What may appear at first sight as child’s play with Platonic solids has actually
profound consequences for physics. According to a theorem of the mathematician
Emmy Noether, each symmetry leads to a conservation law (Noether 1918). In clas-
sical physics this is only true for continuous symmetry transformations, roughly
speaking those transformations that can be pictured as being made up of (arbitrarily)
many (correspondingly) small transformations. The spatial translations mentioned
above may serve as an example. A spatial translation can be thought of as consisting
of many small translations. Newtonian mechanics possesses ten independent contin-
uous symmetries. Together with the corresponding conserved quantities following
from Noether’s theorem, they are put together in Table 4.2. If one replaces Galilei
transformations by Lorentz transformations (AppendixB), one obtains the symme-
tries of special relativity. These symmetries of Maxwell’s electrodynamics and of
relativistic mechanics correspond again to ten independent transformations yield-
ing ten conservation laws. The group of these symmetry transformations is called
Poincaré group or inhomogeneous Lorentz group.

With a few semantic modifications (conserved quantities correspond to symmetry
operators), those relationships also hold in quantum theory. However, in quantum
mechanics two new aspects arise.

Table 4.2 Symmetries and conserved quantities of classical mechanics

Symmetry Number of parameters Conserved quantity

Temporal translation 1 Energy

Spatial translations 3 Momentum

Rotations 3 Angular momentum

Galilei transformations 3 Center of mass
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i. Also discrete symmetry transformations can lead to conserved quantities. Dif-
ferent from the previously mentioned continuous transformations, discrete sym-
metries cannot be put together with many small transformations. An important
example is the space reflection or parity transformation �r → −�r (time remains
unchanged). In quantum mechanics there exists a symmetry operator P (P for
parity) whose eigenvalues can only be ±1 because two successive parity trans-
formations lead back to the original state. For instance, one can characterise
atomic energy levels by assigning positive or negative parity to the correspond-
ing states. This distinction is important for the understanding of selection rules
for atomic transitions.

ii. For some symmetries the order of successive transformations matters. For
instance, if one carries out two successive rotations around two different axes, the
result will depend on the order of rotations. The corresponding symmetry groups
like the group of rotations are called non-abelian groups. In contrast, the transla-
tions form an abelian group. It does not matter in which order one performs two
translations. The existence of non-abelian symmetry groups leads in quantum
theory to a phenomenon unknown in classical physics, the so-called degeneracy
of energy levels. This phenomenon can again be elucidated for the rotation group.
If the system under consideration, e.g., simply an atom, remains unchanged under
rotations (rotational invariance), each energy level is characterised by a definite
total angular momentum J consisting in general of orbital and intrinsic angular
momenta. The correspondingmagnetic quantumnumberm (not to be confounded
with a mass) can acquire 2 J + 1 values −J,−J + 1, . . . , J − 1, J . The energy
level with angular momentum J then consists not of just one but of 2 J +1 states,
all with the same energy (degeneracy). But how can one distinguish those degen-
erate states experimentally if they all have the same energy? The simplest way
is to apply a homogeneous magnetic field that points in a certain direction. The
system is now no longer rotationally invariant because the magnetic field singles
out a certain direction. And in fact the level splits up in 2 J + 1 equidistant levels
and this splitting is known as Zeeman effect (Chaps. 2, 3). Understanding this
phenomenon also implies that slightly broken symmetries (as in this case by a
magnetic field) may often be detected more easily than exact symmetries.

In particle physics two more discrete symmetry transformations play a role. The
Newtonian equations of motion remain unchanged under a transformation t → −t
if the potential depends only on the spatial coordinates, i.e., if the potential is time
independent. This implies that every solution of the equations of motion is again a
solution if one changes the sign of the time coordinate. One speaks of time rever-
sal or reversal of motion. In quantum field theory this symmetry transformation is
implemented by a time reversal operator7 T. However, unlike parity this operator
does not have definite eigenvalues, but T implies relations between processes where

7Not to be mixed up with the hypothetical operator for the time itself that we investigated at the
beginning of this chapter.
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Table 4.3 Impact of parity P and time reversal T on some measurable quantities (observables)

Observable P T

Momentum �p − �p − �p
Angular momentum �J �J − �J
Electric field �E − �E �E
Electric dipole
moment

�J · �E − �J · �E − �J · �E

initial and final states are interchanged. For instance, time reversal relates the ampli-
tudes for the scattering processes A + B → C + D and C + D → A + B. Using
the correspondence principle, the effect of P and T on some measurable quantities
can be deduced from classical physics. A few of those relations are collected in
Table 4.3.

The last line in Table 4.3 implies that in theories with parity and time reversal as
valid symmetries particles cannot have a permanent electric dipole moment. Up to
now all experimental attempts to detect such electric dipole moments, which can be
performed with great precision especially for neutrons and electrons, have produced
negative results although both P and T are violated by the weak interactions. Weak
means really weak in this case.

The symmetry transformations considered so far are all space-time transforma-
tions. For a reason soon to become evident, we consider here yet one more discrete
transformation that interchanges particles and antiparticles but leaves the space-time
coordinates unchanged. This transformation is called charge conjugation C. At first,
it seems to have a realistic chance to acquire the status of a symmetry because parti-
cles and antiparticles do not only have the same absolute value of the electric charge
but also the same mass.

Till the middle of last century the opinion prevailed that the symmetries discussed
so far reflect the underlying simplicity of nature. Thus, therewas a considerable shock
when in 1957 a definite violation of parity was found in the β decay of polarised
cobalt nuclei. Not only that but the weak interactions that are responsible for β
decays also violate charge conjugation. Two decades later Steven Weinberg posed
the following question in his Nobel Lecture of 1979: “Is nature only approximately
simple?” Of course, one can also share the opinion of Tsung-Dao Lee, another Nobel
Prize winner, that also approximate symmetries may indicate fundamental properties
of nature as in the case of the weak interactions.

We will return to the symmetry properties of the weak interactions in Chap.7. To
conclude this chapter, we consider another general theorem of relativistic quantum
field theory that has a status comparable to the spin-statistics theorem. The CPT the-
orem of Gerhart Lüders, John Bell, Wolfgang Pauli and Bruno Zumino asserts that
every local Lorentz invariant quantum field theory is also invariant under the com-
bined transformation CPT (Lüders 1954; Bell 1955; Pauli 1955; Lüders and Zumino
1958). An important consequence of this theorem is that particle and antiparticle
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must have the same mass and lifetime even if charge conjugation C is not a valid
symmetry as in the weak interactions. Up to this day no violation of this fundamental
theorem has been observed. On the contrary, when in 1964 also a violation of CP
was detected in some decays of neutral K mesons, most particle physicists were
convinced that in processes of the weak interactions also time reversal T must be
violated so that the combined transformation CPT could again be a symmetry of the
weak interactions. This could indeed be verified in 1999 in an experiment at CERN.
Violations of the CPT theorem and/or of the spin-statistics theorem would require a
radical change of the theoretical basis of fundamental physics.
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5QuantumElectrodynamics:Prototype
of aQuantumFieldTheory

Foundations of Quantum Electrodynamics

As the name indicates, quantum electrodynamics (QED) is the quantised counterpart
of classical electrodynamics and it describes the interaction of the electromagnetic
field with charged matter particles. In the Standard Model (Chap.9) the matter parti-
cles are leptons and quarks. Here we restrict ourselves to the simplest and historically
most relevant case of the matter particles and only deal with electrons and, as always
in quantum field theory, their antiparticles, the positrons.

Since QED has a classical limit, one could fall back on the correspondence prin-
ciple for its construction. The classical electric and magnetic fields are replaced
by quantum fields (field operators), but which quantities should adopt the role of
the classical charge and current densities in Maxwell’s equations (AppendixB)? To
answer this question, we refer to the continuity equation in classical electrodynamics.
If the electric charge in a given volume changes, this can only happen if an electric
current flows into or out of the volume. The continuity equation governs this balance
and it is an essential part of classical electrodynamics. As we restrict ourselves here
to electrons as matter particles (and fields), charge and current densities must be
constructed from the Dirac field ψ(x) for the electron (Table4.1) so that the conti-
nuity equation also holds in QED. In the relativistic formulation the notion current
conservation instead of continuity equation is usually employed. It now turns out
that there is only one possibility to construct a conserved current out of the electron
field.

In classical physics the theory is defined by Newton’s equations of motion (A.2)
for mechanics and byMaxwell’s equations (B.1) for electrodynamics. But especially
in mechanics it often is of advantage to use the so-called Lagrange function. With
the help of that function the physicist can derive the equations of motion. The use
of the Lagrange function has many advantages. In practically all cases it is more
compact than the explicit equations of motion and the symmetries of a problem can
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be read off more easily from the Lagrange function. While in classical physics the
Lagrange function simplifies the life of the theoretician, the analogue in quantum
field theory is practically indispensable, e.g., for the formulation of the Standard
Model. This analogue is actually an operator-valued Lagrange density but particle
physicists commonly refer to it simply as the Lagrangian. If one would write down
the field equations of the Standard Model of fundamental interactions explicitly,
even an expert could easily lose track, especially concerning the part of the weak
interactions. For each field (each particle) there is a separate field equation but there
is only one Lagrangian for all those fields, which greatly simplifies matters.

The Lagrangian of QED has the relatively “simple” form1

LQED(x) = ψ(x)
(
i γμ

[
∂μ − i e Aμ(x)

] − m
)
ψ(x) − 1

4
Fμν(x)Fμν(x) . (5.1)

For the start, the gentle readers are kindly asked to accept the expression (5.1) simply
as a physics piece of art. After all, all the interaction between photons and electrons
is contained in this one line! More precisely, the interaction is contained only in the
term proportional to the elementary charge2 e. Let us first consider the hypothetical
case that the field ψ(x) represents an uncharged particle, i.e., we put e = 0 in (5.1).
Then the Lagrangian (5.1) falls into two pieces that have nothing to do with each
other. The first term describes the free Dirac field for a particle with mass m. Hardly
anybody should be surprised that the corresponding field equation is just the Dirac
equation3:

(
i γμ∂μ − m

)
ψ(x) = 0 . (5.2)

The second term with the field Fμν(x) describes the free electromagnetic field, in
particular free photons. In the relativistic formulation, Fμν(x) comprises the more
familiar electric and magnetic fields �E(x), �B(x). Fμν(x) can also be expressed by
derivatives of the vector field Aμ(x) (Fμν = ∂μAν − ∂ν Aμ) and this brings us back
to the complete QED Lagrangian (5.1). Whereas in classical electrodynamics one
may in principle ignore the potential field Aμ(x) by writing the Maxwell equations
directly for the physically relevant fields �E(x) and �B(x) (AppendixB), the field
Aμ(x) has a more fundamental meaning in QED. It is the quantum field for photons
and it is a vector field because the photons have spin one.

1One reason for this “simplicity” is that we use here, other than elsewhere in the book, the usual
convention of particle physicists expressing actions in units of � and velocities in units of c. In a
notation that has the tendency to confuse the layman: � = c = 1. ∂μ stands for the partial derivative
∂/∂xμ.
2For a particle with charge q, e.g., for a quark with charge q = 2 e/3, the electron charge −e must
be replaced by q.
3γμ (μ = 0, 1, 2, 3) are the four-dimensional Dirac matrices, corresponding to the four components
of the field ψ(x). In (5.1) and (5.2) we use the summation (or Einstein) convention where a sum

over twice occurring indices is understood: e.g., γμ∂μ stands for
3∑

μ=0

γμ ∂

∂xμ
.
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Without any detailed investigations, important symmetry properties of QED can
be read off directly from the Lagrangian (5.1). We will discuss two special exam-
ples more explicitly below. First of all, the Lagrangian (5.1) remains unchanged
if one submits both fields and space-time coordinates to a Lorentz transformation
(AppendixB). Moreover, the Lagrangian (5.1) does not single out any space-time
point and thus QED is translation invariant just like the classical Maxwell theory.
Altogether, QED is therefore invariant under Poincaré transformations (Chap.4). In
addition, the QED Lagrangian remains invariant also under the discrete transfor-
mations P (parity, space reflection) and C (charge conjugation). Because the CPT
theorem holds in any local Lorentz invariant quantum field theory (Chap.4), QED
is necessarily also invariant under time reversal. Although not relevant for QED,
one should be a bit more precise here. All symmetries mentioned so far leave the
Lagrangian and thus also the field equations of QED invariant. But as the quantum
field theories for the nuclear forces will demonstrate, this does not automatically
imply that the solutions of the field equations share this property. This phenomenon
of spontaneous symmetry breaking specific to quantum field theories does not arise
in QED, but we will have to return to it in the discussion of the weak interaction.

Another internal symmetry4 of QED needs a more elaborate discussion. In quan-
tum mechanics, the wave function of the system in question can be submitted to a
phase transformation. This transformation ψ(x) → ei αψ(x) with a real number α
has no physical consequences because only the absolute square of the wave func-
tion ψ(x) is physically relevant (Chap.3). This phase transformation also leaves the
QED Lagrangian (5.1) unchanged where ψ(x) now again is the Dirac field. This is
because ψ(x) is essentially the operator equivalent of the complex conjugate Dirac
field so that the phase α drops out in (5.1). The corresponding conserved quantity
(Noether theorem, Chap.4) is the electron number (more generally, the fermion num-
ber), which implies that in each QED process (more generally, in each process of the
Standard Model) the number of electrons (fermions) minus the number of positrons
(antifermions) does not change.

But there is still more to the symmetries of QED.We nowmodify the phase trans-
formation just discussed by letting the phase depend also on the coordinates, i.e.,
we consider now a transformation ψ(x) → ei e β(x)ψ(x) with a real function β(x).
Under this transformation the Lagrangian (5.1) changes because there is a space-
time derivative in the first term. This modification can be compensated by adding
a term ∂μβ(x) to the vector field Aμ(x). Such a change is well known in classi-
cal electrodynamics. It is a so-called gauge transformation on the potential Aμ(x)
that leaves the physically relevant electromagnetic fields �E(x), �B(x) unchanged
(AppendixB). In Maxwell’s theory this gauge freedom often is used to simplify the
solution of a physical problem. In QED this gauge freedom has still another sig-
nificance. Originally, the photon field Aμ(x) has four components (three space-like
and one time-like, analogous to the space-time coordinates). On the other hand, the

4Under an internal symmetry transformation only the fields but not the space-time coordinates are
transformed.
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photon like any other massless particle with spin �= 0 has only two possible spin
orientations (Wigner 1939;Peskin and Schroeder 1995) and therefore only two phys-
ical components. In classical electrodynamics these two components correspond to
electromagnetic waves with left- or right-handed circular polarisations. The gauge
freedom inQEDguarantees that a photonwith givenmomentum always has only two
physical degrees of freedom. Therefore, QED is a so-called gauge theory with gauge
group U (1) where U stands for a unitary group and 1 for the only gauge function
β(x). In contrast to the symmetries considered so far, like for instance the Poincaré
group, we also speak of a local symmetry transformation in this case because the
transformation function β(x) depends on the local coordinates. Gauge symmetry
and local symmetry are synonymous notions.

Bymeans of the correspondence principle gauge invariance virtually comes down
fromheaven and onemay askwhywemake such a fuss about it. For the quantumfield
theories of the strong and weak nuclear forces where no correspondence principle
will be available, it will turn out that gauge invariance is an essential construction
principle. The quanta of the corresponding vector fields that always come together
with gauge symmetrieswill be theW and Z bosons as carriers of theweak interactions
and the gluons as carriers of the strong interactions. Apparently, gauge invariance is
a fundamental ingredient of all quantum field theories relevant in the microcosm.

S-Matrix and Perturbation Theory

In quantum mechanics the wave function as solution of the Schrödinger equation
contains the complete physical information for the system under consideration. As
mentioned in Chap.4, because of the possibility of creation and annihilation of par-
ticles the situation in relativistic quantum field theories is much more complex. In
practice, i.e. for comparing theoretical predictions with experimental results, the
scattering matrix (S-matrix for short) of John Wheeler and Werner Heisenberg is
the relevant quantity (Wheeler 1937;Heisenberg 1943). A specific element of the
S-matrix contains the probability amplitude for the transition from a given initial
state to a certain final state. Since the number of possible initial and final states is
in principle unlimited, the S-matrix is an infinite-dimensional matrix. However, in
practice only a few columns of this matrix are of interest, with either one particle
(decay) or two particles (scattering process) in the initial state, e.g., one photon and
one electron for Compton scattering (see below). If one has calculated a certain
S-matrix element, its absolute square determines (as in quantum mechanics) exper-
imentally accessible quantities like the partial decay rates of a particle or the cross
section for a scattering process. The S-matrix is a so-called unitary matrix. The sum
of the absolute squares of the matrix elements in one column (same for a row) equals
one because this column contains all possible final states for the given initial state.
Thus, the S-matrix takes into account the conservation of probability and also in this
respect it is the analogue of the quantum mechanical wave function.
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The S-matrix is constrained by the symmetries of the underlying quantum field
theory. For instance, from the Poincaré invariance of the theory it follows that initial
and final state must have the same total momentum, the same total energy and also
the same total angular momentum. Current conservation of QED guarantees the
conservation of electric charge as in classical electrodynamics. Therefore, in each
decay and in each scattering process the total charge of the particles involved is the
same in the initial and in the final state.

Now comes the big disappointment. Neither for QED nor for the Standard Model
altogether a single nontrivial, exact S-matrix element is known. Nontrivial in this
connection means that one really takes the interaction seriously. In the case of no
interaction (e = 0 in the Lagrangian (5.1)) the exact solution is known: the S-matrix
is the unitmatrix and nothing happens at all. Therefore, somemathematical physicists
have been suspecting that QED and the Standard Model do not “exist” in the mathe-
matical sense. This conflict brought the development of quantum field theory almost
to a standstill in the 1930s. Today we believe we know better where the problem is.
A quantum field theory like QED assumes implicitly that the theory remains valid at
arbitrarily small distances and therefore also for arbitrarily high energies. Even for
QED this is not the case because of the unification with the weak interactions in the
electroweak theory (Chap.7), let alone the expected influence of quantum gravity
at very small distances (AppendixA). Most particle physicists therefore view QED
and the StandardModel altogether as so-called effective quantumfield theories, valid
only up to some definite energies. In Chap.11 we will return to the current paradigm
of effective quantum field theories.

Irrespective of the current paradigm, how is it possible to find a concrete prediction
of the theory? The magic word is perturbation theory that allows to calculate S-
matrix elements as power series in the relevant coupling constants. In QED we
have a single coupling constant, the elementary charge e. Since according to present
knowledge both photon and electron are stable particles, all physically relevant S-
matrix elements in QED have exactly two particles in the initial state (scattering
processes).

The calculation of S-matrix elements can be visualised by means of the famous
Feynman diagrams. Those diagrams consist of vertices and lines where the vertices
represent the local interaction and the lines the particles involved. In QED there is
only a single vertex because the Lagrangian (5.1) only contains a single interaction
term. This is another great advantage of the Lagrangian. The particle physicist can
immediately read off the interaction vertices of the theory. The only interaction term
of QED contains exactly three fields (particles): two electrons (ψ(x), ψ(x)) and one
photon (Aμ(x)). The fundamental vertex diagram of QED is therefore of the form
given in Fig. 5.1. This vertex diagram is an integral part of every Feynman diagram
in QED but it does not describe a physical process by itself. An electron cannot turn
into an electron and a photon because the conservation of energy and momentum
would require a zero photon energy. But a photon with zero energy and therefore
also with vanishing momentum (| �p| = E/c for a massless particle) is no photon at
all and thus the picture in Fig. 5.1 does not represent a physical process. This is a
first warning that in general Feynman diagrams should not be interpreted as actual
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γ

e e

Fig.5.1 Fundamental vertex diagram of QED; the full lines stand for an electron (or positron), the
wavy line for a photon

Fig. 5.2 Feynman diagrams for Compton scattering in lowest-order perturbation theory. The dia-
grams should be read from left (initial state) to right (final state)

processes in space and time. Feynman diagrams are suggestive prescriptions for the
particle physicist how to calculate S-matrix elements for the transition from a given
initial state to awell-defined final state. Feynman diagrams can be considered as a sort
of construction kit where each vertex and each line stands for a definite mathematical
expression. Putting the building blocks together then yields the S-matrix element in
question.

In QED there are only a few initial states of practical relevance: e− e− (two
electrons), e− e+ (electron, positron), γ e− (photon, electron) and γ γ (two photons).
An interesting example is the elastic scattering of photons and electrons, the so-called
Compton scattering γ e− → γ e−. In lowest-order perturbation theory (also known
as Born approximation), i.e. to lowest order in the unit charge e, the two Feynman
diagrams in Fig. 5.2 stand for the corresponding scattering amplitude (S-matrix
element).

Since each diagram contains two vertices, the corresponding S-matrix element
is proportional to e2 and thus to the fine-structure constant α. The left diagram
in Fig. 5.2 suggests the interpretation that the electron in the initial state absorbs a
photon, then continues on for awhile before emitting finally another photon. Electron
and photon in the final state are then registered in a detector. The problem with this
interpretation is that the electron in the intermediate state cannot be aphysical electron
as we just discussed in connection with the fundamental vertex diagram in Fig. 5.1.
Therefore, the particle physicists speak of a “virtual” particle in the intermediate
state. However, whatever the terminology, in general a Feynman diagram is not a
space-time description of an actual physical process. Of course, the same is true for
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the right diagram in Fig. 5.2. Here the electron in the initial state at first seems to emit
a photon before it meets after a while the incoming photon to absorb it and to turn into
the electron in the final state. Hence there are certain limits to the “understanding” of
Feynman diagrams. The last instance is always the perturbative calculation of the S-
matrix element for the process under consideration and this calculation is completely
unambiguous. In particular, the formalism of perturbation theory also predicts that
the S-matrix element for Compton scattering in the Born approximation consists
of the sum of exactly two amplitudes represented by the two diagrams in Fig. 5.2.
Without the explicit calculation, a deeper understanding is hardly possible.

Nowadays, there are computer programs that generate all Feynman diagrams for
a process with given initial and final states to a certain order in perturbation theory.
These diagrams can then be transformed into graphic files for an eventual publica-
tion. Most importantly, the programs also can generate the numerical code for the
corresponding S-matrix element to calculate theoretical predictions for comparison
with experimental results. Feynman diagrams are indispensable in current particle
physics but this was not always the case. Here is an amusing anecdote that is too
good not to be true. At the end of the 1940s, the American Nobel Laureate Julian
Schwinger developed an alternative approach for QED (Chap.6) without Feynman
diagrams. His students and collaborators at Harvard University were therefore well
advised to use the descriptive Feynman diagrams in discussions only with great
care. One evening the custodian forgot to lock Schwinger’s office after work. The
next morning the students passing by were quite astonished after taking a glance
at Schwinger’s sanctuary. The big blackboard in his office was completely covered
with Feynman diagrams. Se non è vero, è ben trovato.

The quantum field theoretic calculation of S-matrix elements guarantees the basic
property of quantum physics that amplitudes must be added, not the probabilities.
In other words, the probability for Compton scattering in the Born approximation is
proportional to the absolute square of the sum of the two amplitudes represented by
the Feynman diagrams in Fig. 5.2. The fundamental rule is that for a given initial
state all Feynman amplitudes must be added that lead to the same final state. The
resulting interferences between the (in general) complex amplitudes are an essential
feature of quantum physics and they are of course experimentally accessible.

Before taking a closer look at Compton scattering, we briefly discuss the so-called
crossing symmetry of quantum field theory that can be nicely visualised by means
of Feynman diagrams. Once the amplitude for Compton scattering γ e− → γ e−
has been calculated, one gets the amplitudes for the processes γ γ → e− e+ (pair
creation) and e− e+ → γ γ (electron-positron annihilation) practically for free. The
Feynman diagrams for the latter processes can be obtained by “crossing” some
incoming and/or outgoing lines in the diagrams of Fig. 5.2. One must only take into
account that by crossing a fermion in the initial state becomes an antifermion in the
final state (and vice versa), whereas a photon remains a photon because the photon
is its own antiparticle. Then one only has to rename the corresponding energies and
momenta and one immediately obtains the amplitudes for the crossed processes.

Back to Compton scattering and to a comparison between theory and experiment.
Imagine an incoming beam of photons impinging on a target of electrons, in practice
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atoms. It is clear that the probability for a scattering event is the bigger the more
photons hit the target and the longer the experiment runs. In addition, the proba-
bility depends on the number of electrons in the target. To be independent of these
parameters that vary from experiment to experiment, the physicists define a so-called
cross section for the scattering process under consideration. The cross section is the
probability for the scattering on a target particle per time (measured in s−1), divided
by the flux of incoming particles, in our case photons (measured in m−2 s−1). This
quotient has obviously the dimension of an area (measured in m2) and for this reason
it is called the cross section for the corresponding scattering (denoted by σ). With
some caution, one can therefore interpret the cross section as an effective area of the
target particle “seen” by the incoming particle.

To find out what a photon actually sees in Compton scattering, we consider the
integrated cross section σC = σ(γ e− → γ e−). Here one sums for a given initial
configuration (in the lab system for an electron at rest defined by the momentum of
the incoming photon5) over all possible final states. More concretely, one integrates
over the momenta and sums over the spins of the particles in the final state. Then the
integrated cross section σC depends only on the energy Eγ of the incoming photon.
We do not carry out the calculation here but we plot the dependence of the cross
section6 on the energy Eγ in Fig. 5.3. More precisely, we plot the ratio σC(z)/σT
as a function of the ratio z = Eγ/me c2. Here, σT is the so-called Thomson cross
section

σT = 8π

3

(
α �

me c

)2

= 8π

3

(
e2

4πme c2

)2

. (5.3)

Its significance will become clear right away. We have encountered the lengths
appearing in this formula in Chap.3 as classical electron radius rcl and as Compton
wave length rC in Eqs. (3.2) and (3.3). As Fig. 5.3 indicates, the Thomson cross
section (5.3) is the low-energy limit of the Compton cross section σC(z):

σT = lim
z→0

σC(z) . (5.4)

But σT not only is the low-energy limit of the Compton cross section but also its
classical limit, i.e. the cross section for the scattering of electromagnetic waves
on free electrons in classical electrodynamics. In contrast to the classical case, the
Compton cross section is energy dependent and it tends for large energies of the
incoming photons (z → ∞) to zero. On the other hand, there are new possible final
states in relativistic quantum field theory. For high enough photon energies, electron-
positron pairs can be produced in addition to elastic scattering γ e− → γ e−, e.g.,
γ e− → γ e− e+ e−, etc.

The cross section in Fig. 5.3 agrees well with experiment as long as the mea-
surement is not too precise. At the present level of experimental particle physics,

5We consider unpolarised photons and electrons.
6The Compton cross section in lowest-order perturbation theory was first calculated by Oskar Klein
and Yoshio Nishina (Klein and Nishina 1929).
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Fig. 5.3 Energy dependence
of the ratio σC(z)/σT with
z = Eγ/me c2; Eγ is the
energy of the incoming
photon in the electron rest
system

however, the calculation of higher orders in perturbation theory is indispensable.
Since Compton scattering is actually a scattering of photons on atoms, the question
seems legitimate whether for comparison with a precision experiment one should
also take the scattering on the positively charged protons in the atomic nucleus into
account. Now the proton is not a fundamental particle but a complicated bound state
of quarks and gluons (Chap.8). Therefore, one cannot simply replace the electron
mass by the proton mass in the formula (5.3) for σT and in the general formula for
σC(z) to get the cross section for Compton scattering on a proton. But for an order-
of-magnitude estimate this is certainly all right. Since the ratio of masses squared
of protons and electrons is m2

p/m
2
e � 3 · 106, the contribution of photon-nucleus

scattering is indeed negligible.

Anomalous Magnetic Moment of the Electron

At the end of this chapter we turn to another success story of the perturbation the-
oretic treatment of QED. The magnetic moment of a particle is a measure for the
interaction of the particle with a magnetic field. In classical electrodynamics the
magnetic moment vector �μ for a particle with charge q and mass m is proportional
to the orbital angular momentum �L:

�μ = q

2mc
�L . (5.5)

In quantum theory there is an additional contribution due to the spin �S of the particle:

�μS = g
q

2mc
�S . (5.6)
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The Landé factor or simply g factor was introduced purely empirically in 1923
by Alfred Landé to explain the anomalous Zeeman effect (Landé 1923). It turned
out that for an electron (spin 1/2) a g factor ge � 2 was necessary to reproduce
the experimental results. As a matter of fact, the Dirac equation predicts exactly
ge = 2 for the electron. However, afterWorldWar II evermore precisemeasurements
showed thatge is not exactly 2. Since theDirac equation is a relativisticwave equation,
this deviation could not simply be a relativistic correction like the fine structure of
the hydrogen atom (Chap.3). Now it was the turn of quantum field theory and more
specifically of QED.

So far we have regarded the field Aμ(x) in the QED Lagrangian (5.1) as the
quantised photon field. But actually Aμ(x) can also represent a classical field like a
magnetic field. The fundamental vertex diagram in Fig. 5.1 can then also be inter-
preted as the reaction of an electron to a classical magnetic field �B. Thus, it is not
too surprising that the Feynman diagram in Fig. 5.1 yields ge = 2, the result from
the Dirac equation. But in QED this is only the result in lowest-order perturbation
theory. The next-higher order corresponds to the diagram in Fig. 5.4.

Before we discuss the result first calculated by Schwinger, we introduce the con-
vention of particle physicists who call the deviation from the quasi-classical value
ge = 2 the anomalous magnetic moment ae, more precisely ae = (ge − 2)/2. Since
the Feynman diagram in Fig. 5.4 contains two additional vertices compared to the
fundamental vertex diagram in Fig. 5.1, ae must be proportional to e2, i.e. to α. The
Schwinger correction (Schwinger 1948)

ae = α

2π
� 0.0011614 (5.7)

not only was in good agreement with experimental results at the end of the 1940s,
but it was also a milestone on the way to general acceptance of QED, in particular of
its perturbation theoretic treatment (Chap.6). In the meantime, 70 years have passed
and experimental physics has made tremendous progress. Today, the anomalous
magnetic moment of the electron is one of the most precisely measured quantities in
physics. The current value is (Hanneke et al. 2011)

Fig. 5.4 Feynman diagram
for the Schwinger correction
to ge

�B
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Fig. 5.5 Some of the Feynman diagrams contributing to the anomalous magnetic moment of the
electron ae at order α4 (From Ayoama et al. 2012; with kind permission of © American Physical
Society 2012. All Rights Reserved)

aexpe = 0.00115965218073(28) . (5.8)

Comparison with the Schwinger correction (5.7) shows that higher orders in the
perturbative expansion are needed if an agreement between theory and experiment
should be achieved. Each higher order contributes an extra factor α so that the
theoretical result for ae has the form of a power series in α. For the purpose of
illustration, some of the Feynman diagrams needed for the calculation of terms
proportional to α4 are displayed in Fig. 5.5 (Ayoama et al. 2012). All those diagrams
have one property in common, namely four independent loops, as one can check with
some practice. As amatter of fact, the perturbative expansion in quantum field theory
is quite generally an expansion in the number of closed loops in the corresponding
Feynman diagrams. We are going to elaborate on this observation in the following
chapter.

In QED each closed loop brings in another factor α as can for instance be seen
by comparing Figs. 5.4 and 5.5. Today even all five-loop contributions are known
(Ayoama et al. 2015). There are exactly 12672 independent Feynman diagrams with
five loops! Thus, ae is known as a power series in the fine-structure constant up
to and including order α5. For comparison with the experimental result (5.8) we
therefore need a value for the fine-structure constant. Until recently, the most precise
determination from outside particle physics came from precision measurements of
the recoil spectrum of rubidium atoms (Bouchendira et al. 2011; Ayoama et al. 2018):

α−1(Rb) = 137.035998995(85) . (5.9)

With this value forαoneobtains for the theoretical prediction (Laporta 2017;Ayoama
et al. 2018) of the anomalous magnetic moment of the electron

athe = 0.001159652182032(720) , (5.10)

in good agreement with the experimental value (5.8). One can also interpret the result
from the other end. Comparing the experimental result (5.8)with the theoretical value
for ae yields the QED value for the fine-structure constant:
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α−1(QED) = 137.0359991491(331) . (5.11)

In comparison with the rubidium value (5.9), the QED value (5.11) is nearly three
times as precise. In other words, the comparison between theory and experiment for
ae gave the best value for the fine-structure constant. Very recently, atomic physics
has again taken the leadership. A measurement of the recoil frequency of cesium
atoms in a matter-wave interferometer (Parker et al. 2018) produced the currently
most precise value of the fine-structure constant:

α−1(Cs) = 137.035999046(27) . (5.12)

Putting aside conspiracy theories – after all, the landings on the moon could
have happened in a desert in Nevada in reality, the agreement between theory and
experiment for the anomalous magnetic moment of the electron is remarkable. With
the help of perturbation theory, quantum electrodynamics, which according to some
mathematical physicists does not even “exist”, makes extremely precise predictions
for physical observables that have withstood all experimental tests so far. Since very
likely there is no exact solution of QED (see also Chap.11), the perturbative expan-
sion should not be interpreted as a convergent power series in the fine-structure
constant but as a so-called asymptotic series that will be modified by a more fun-
damental theory at smaller distances. In fact, with the Standard Model (Chap.9) we
already have such an underlying, more fundamental theory at our disposal. Never-
theless, electrodynamics from its classical version as macroscopic Maxwell theory
to QED as its quantised version remains the physical theory with the largest domain
of validity.
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6TheCrisis ofQuantumFieldTheory

Infinities of Quantum Field Theory

At the end of the 1920s, quantum electrodynamics in its present form was known.
In the following years several scattering processes were calculated in lowest-order
perturbation theory. In addition to the reactions related to Compton scattering
by crossing (Chap.5: pair creation γ γ → e− e+, electron-positron annihilation
e− e+ → γ γ), also elastic electron-electron scattering e− e− → e− e− and elastic
electron-positron scattering e− e+ → e− e+ were analysed. At that time Feynman
diagrams were still unknown and the calculations were considerably more compli-
cated than today. Although QED is Lorentz invariant, a major problem was that the
perturbation expansion in the 1930s did not reflect this symmetry manifestly. As a
consequence, the contributions of electrons and positronswere treated separately. Es-
pecially in higher orders of perturbation theory, this led to some misunderstandings,
not to say mistakes.

As far as experimental results were available for the processes mentioned, the
agreementwith theoretical predictions in theBorn approximationwas evident. There-
fore, initially there were hardly any doubts that QED is the correct theory for the
interaction of electrons and positrons with the electromagnetic field. But problems
arose as soon as people set out to calculate higher orders in perturbation theory. Let
us consider first the fundamental QED vertex diagram in Fig. 5.1. To create a dia-
gram of higher order with the same external lines (particles), we attach an additional
vertex on one of the electron lines in the left diagram of Fig. 6.1. That entails an
additional factor e but also an additional photon line. Since we want to have a single
external photon line only, the additional photon must connect back to an electron
line. There are now two possibilities. The extra photon can return to the electron line
it originated from or it can connect to the other electron line. We will return to the
first possibility shortly. The second possibility leads to the right diagram in Fig. 6.1
depicting the vertex correction that we already encountered in the previous chapter
in connection with the anomalous magnetic moment.
© Springer Nature Switzerland AG 2019
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Fig. 6.1 Fundamental vertex
diagram of QED (left
diagram) and one-loop vertex
correction (right diagram) −→

The following properties not only apply to this diagram but to all Feynman diagrams
in QED, keeping external lines fixed.

• One order higher in perturbation theory brings with it a factor e2 in the amplitude.
The perturbative series is a power series in the fine-structure constant α.

• One order higher in perturbation theory entails an additional closed loop in the
Feynman diagram. The perturbative series is therefore also an expansion in the
number of closed loops (see also the four-loop diagrams in Fig. 5.5 generating
contributions of order α4).

QED is a quantum field theory with the elementary charge e as the only coupling
constant. Therefore, the loop expansion and the expansion in powers of the fine-
structure constant go hand in hand. However, in the StandardModel there are several
coupling constants, especially for the part of the weak interactions. How should the
perturbative expansion be organised in this general case? There are several good
reasons in favour of the loop expansion as the basic ordering principle. First of all, it
turns out that the loop expansion corresponds to an expansion in powers of Planck’s
constant �. In contrast to the many different coupling constants in the general case,
Planck’s constant is a well-defined, experimentally precisely known quantity. As a
further strong argument in favour of the loop expansion, the symmetry properties of a
quantum field theory are manifest at each order in �. For terms with a given power in
a coupling constant, this generally is not the case. This is especially important for the
gauge symmetries of the Standard Model. The sum of all Feynman amplitudes with
the same number of loops (and of course with the same particles in initial and final
states) is gauge invariant, an indispensable condition for a meaningful theoretical
prediction. In a nutshell, the loop expansion is the measure of all things for the
perturbative treatment of any quantum field theory.

Before we turn to the historical development of quantum field theory in the 1930s,
we discuss two more ingredients of one-loop Feynman diagrams in QED. As men-
tioned before in connection with the vertex correction, there is also the possibility of
the photon returning to the same electron line it originated from. The corresponding
diagram is displayed on the right side of Fig. 6.2 and it is called the self-energy of
the electron in the one-loop approximation.

InQED the electron seems to feel an interaction even if there is no other electron or
photon anywhere nearby. With the flourishing imagination of the particle physicist,
the self-energy correction can be interpreted as an electron that occasionally emits

https://doi.org/10.1007/978-3-030-14479-1_5
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−→

Fig. 6.2 Free electron (left diagram) and one-loop self-energy correction (right diagram)

−→

Fig. 6.3 Free photon (left diagram) and vacuum polarisation (right diagram)

Fig. 6.4 Lamb shift of the
two energy levels in the
hydrogen atom with
principal quantum number
n = 2 and total angular
momentum J = 1/2

4.4 · 10−6 eV

2S1/2 (L = 0)

2P1/2 (L = 1)

a (virtual) photon to reabsorb it again immediately afterwards. Similar things may
happen to a photon as the right diagram in Fig. 6.3 shows. The photon flies along hap-
pily when it suddenly notices that a virtual electron-positron pair wishes to interact
with it. It is as if the photon would notice the presence of e− e+ pairs in the vacuum,
hence the name vacuum polarisation. We will discuss very soon what vertex correc-
tion, electron self-energy and vacuum polarisation have to do with experimentally
measurable effects.

But we will now return to the historical development in the 1930s. In 1930 Robert
Oppenheimer, later scientific director of the Manhattan Project in Los Alamos, in-
vestigated the influence of QED on the spectral lines of the hydrogen atom. Both the
Schrödinger and the Dirac equation predict the degeneracy of some energy levels,
i.e., some levels should have the same energy. Oppenheimer rightly conjectured that
QED can lift those degeneracies. In particular, he turned to the first excited state
of the H-atom with principal quantum number n = 2 (Fig. 2.1). According to the
Dirac equation the two states with n = 2 and total angular momentum J = 1/2,
which differ in the orbital angular momentum of the electron, have the same energy
(Fig. 3.3).

Although in 1930 this had not yet been confirmed experimentally,QED indeed lifts
this degeneracy. The splitting is called Lamb shift and it is reproduced in Fig. 6.4.
When Oppenheimer tried to calculate the perturbative corrections of the energy
levels, he not only discovered that they were different from zero as expected but
also that they were actually infinitely large (Oppenheimer 1930)! This was the first
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occurrence of the notorious divergences of QED, a seemingly unsolvable problem
for quantum physics during almost two decades.

In 1930 it was already recognized that the divergences of perturbation theory had
to do with the local structure of the interaction. This structure is based on the implicit
assumption that QED would remain valid at smallest distances and therefore also
for arbitrarily high energies. From his unsuccessful attempt Oppenheimer concluded
that QED would make sense at best for energies not exceeding 100MeV. Today the
world’s most powerful accelerator, the LHC at CERN in Geneva, delivers energies
in the order of 10TeV, a factor 100000 bigger than 100MeV and QED is still going
strong.

A few years after Oppenheimer, Victor Weisskopf investigated the somewhat
easier problem of the electromagnetic self-energy of the electron (Weisskopf 1934).
Already classical electrodynamics struggled with the problem of the self-mass of
charged particles. Picturing the electron as a small charged sphere with constant
charge density, the energy of the charge distribution changes themass of the electron.
While this is not unexpected, the electromagnetic self-mass of the electron becomes
infinitely large when the radius of the sphere tends to zero. But since the electron
mass can be measured with great precision, one simply ignores the problem of the
divergent self-mass in Maxwell’s theory. There is even a certain justification for this
procedure. Letting the radius of the electron sphere go to zero, one is bound to reach
a domain where classical physics is no more valid. Therefore, the expectation that
quantum field theory and QED in particular would solve this problem was certainly
legitimate. This expectation was bitterly disappointed by the work of Weisskopf
(with help from Wendell Furry). Even though the self-energy of the electron due to
the interaction with the electromagnetic field is “less” divergent than in the classical
case,1 infinite remains infinite.

The physicists in the 1930s were faced with a dilemma. On the one hand, quan-
tum field theory produced definite successes (spin-statistics theorem, CPT theorem,
agreement between theory and experiment in many cases), but on the other hand
most perturbative corrections to the semi-classical Born approximation were infi-
nite and therefore meaningless. A radical break with the concept of a local quantum
field theory seemed to be called for. Several attempts were undertaken to revoke
strict locality either through modifications at small distances or by limiting the en-
ergy range where the theory could be applied. For instance, Heisenberg suggested
that there could be a smallest distance in nature in analogy to the smallest action
� and to the maximal velocity c. All those attempts were unsatisfactory in the end
because even small modifications of the structures not only were arbitrary but they
also had a big impact on measurable quantities. The whole procedure was in conflict
with the well-established idea of the quantum ladder (Chap.1). From the present
viewpoint of effective quantum field theories (Chap.11), physics should be able to
describe, e.g., the structure of atoms at least to a good approximation without having

1The classical self-energy diverges like 1/a as the radius a of the sphere goes to zero whereas in
QED the self-energy diverges “only” logarithmically.
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to take recourse to new degrees of freedom at highest energies like quantum gravity
(Appendix A). The divergences of QED seemed to be in conflict with this well-
founded expectation. Therefore, even more radical ideas were put forward, e.g., by
Dirac to allow negative probabilities. The situation can be well characterised with
a comment from Schwinger (cited in Weinberg 1995): “The preoccupation of the
majority of involved physicists was not with analysing and carefully applying the
known relativistic theory of coupled electron and electromagnetic fields but with
changing it.”

The solution of the crisis is a beautiful example for the fruitful collaboration
between theory and experiment that has often given rise to significant advances in
our understanding of nature. Improvements of experimental methods after World
War II led in 1947 to two pioneering precision experiments: the Lamb shift (Lamb
and Retherford 1947, Fig. 6.4) and the anomalous magnetic moment of the electron
(Kusch and Foley 1947, Chap.5). Roughly at the same time, a decisive step forward
was achieved in the perturbative treatment of QED. In the formulation of Weinberg
(1995): “When the revolution came in the late 1940s, it was made by physicists
who though mostly young were playing a conservative role, turning away from
the search by their predecessors for a radical solution.” The theoretical progress
was characterised by two essential innovations, the manifestly Lorentz invariant
perturbation theory and the concept of renormalisation.

The new formulation of perturbation theory was initiated in 1946 by the Japanese
physicist Shinichiro Tomonaga and his collaborators (Tomonaga 1946;Koba et al.
1947;Kanesawa and Tomonaga 1948). In the aftermath of the Second World War,
these developments remained unknown in theWest for some time. Conversely, Japan
was largely cut off from events in the Western world, especially from new exper-
imental results. Allegedly, Tomonaga learned about the experiment of Lamb and
Retherford from a short notice in Newsweek. Independently and different from the
Japanese approach, Julian Schwinger and Richard Feynman both published their
papers on a manifestly Lorentz invariant perturbation theory in 1948 (Schwinger
1948;Feynman 1948). Feynman’s article contained the suggestive graphical rules
(Feynman diagrams) for the calculation of S-matrix elements. The three approaches
(Tomonaga, Schwinger, Feynman) were all different, but Freeman Dyson succeeded
to prove (Dyson 1949) that themethods of Tomonaga, Schwinger and Feynman yield
the same S-matrix elements. This was one important reason why Feynman diagrams
soon prevailed.

Renormalisation

The simplification of the perturbative expansion with manifestly Lorentz invariant
methods was by itself not the solution of the divergence problem but it was an im-
portant step in the right direction. The solution carries the name renormalisation
program of quantum field theory and it not only works for QED but for the Standard
Model altogether. The basic idea of renormalisation is a priori independent of per-
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turbation theory and its divergences. Let us return to the starting point of QED, the
Lagrangian in Eq. (5.1). That Lagrangian contains two parameters, the mass m and
the charge e of the electron, and their interpretation seems to be self-evident. But
independently of our intuition, these two quantities must be determined by specific
physical measurements.

For the mass this is straightforward. In an experiment energy and momentum of
a particle can be measured. By means of the relativistic relation between energy and
momentum the mass can then be determined:

m =
√
E2 − p2c2/c2 . (6.1)

As discussed above, energy and therefore also themass are changed by the interaction
with the electromagnetic field. The theory must account for this change. In the one-
loop approximation this is implemented by the self-energy correction in Fig. 6.2.
Therefore, one must distinguish between the parameter in the Lagrangian (for better
distinction sometimes denoted asm0) and the actual physical massm. In other words,
the equality m = m0 only holds at lowest order in perturbation theory.

One could suspect that also the photon becomes massive through the interaction
with matter (electrons and positrons in our simplified scenario). Experimental find-
ings (Tanabashi et al. 2018), however, indicate that a possible photon mass would
have to be smaller than 10−18 eV/c2. This in turn implies that the Compton wave
length of the photon λγ = �/mγc would be bigger than 2 · 1011 m, i.e. somewhat
longer than the distance between the earth and the sun. This lower bound on λγ is
not accidental because the best upper limit for mγ is due to investigations of the
magnetic field in the solar wind. In other words, electrodynamics is experimentally
validated at least up to distances of 2 · 1011 m. What does QED have to say? In the
one-loop approximation the vacuum polarisation in Fig. 6.3 is the relevant diagram.
QED makes a stringent prediction. As long as gauge invariance, i.e. the invariance
of QED under the gauge groupU (1), is not violated deliberately or accidentally, the
photon mass is exactly zero to all orders in perturbation theory.

This brings us to the definition of the electric charge. In this case the definition is
not as unique as for the mass, but again gauge invariance guarantees that all methods
produce the same value for the charge as long as the measurements are done at low
energies. As discussed in the previous chapter, in practice one uses the most precise
experimental methods such as measurements of the quantumHall effect, of the recoil
spectra of atoms or of the anomalous magnetic moment of the electron.

For didactic reasons here we use in the discussion of charge renormalisation
Compton scattering of photons on electrons that we already analysed in the Born
approximation in the previous chapter. Therewe found that theCompton cross section
σC(z) at lowest order in perturbation theory assumes the form of the Thomson cross
section (5.3) in the limit of vanishing photon energy (z → 0):

lim
z→0

σC(z) = 8π

3

(
e2

4πm c2

)2

. (6.2)
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The elementary charge e can therefore be defined by the following relation:

e = lim
z→0

(
3

8π
(4πm c2)2σC(z)

)1/4

. (6.3)

Since we used the Born approximation with the Feynman diagrams in Fig. 5.2 for
the calculation of the Compton cross section, the formulas (6.2) and (6.3) only hold
for the parameter in the QED Lagrangian that we should call e0 in analogy to the
mass parameter m0. If we now turn to the next-higher order in perturbation theory
(one-loop order), we first decorate the tree diagrams in Fig. 5.2 with the one-loop
insertions vertex correction (Fig. 6.1), self-energy correction (Fig. 6.2) and vacuum
polarisation (Fig. 6.3) and then add the remaining one-loop amplitudes. Without fur-
ther justification, we remark that for the calculation of Feynman amplitudes beyond
the Born approximation the field operators also have to be renormalised. At the end
of a lengthy calculation one finds that the definition (6.3) now yields a different value
for e that is a complicated function of e0,m0.

Altogether, at the one-loop level we obtain functions of the form

m = m(m0, e0), e = e(m0, e0) , (6.4)

which can be inverted to produce the inverse functions

m0 = m0(m, e), e0 = e0(m, e) . (6.5)

With these functions we now express the Feynman amplitudes in the one-loop ap-
proximation completely in terms of the physically well-defined parameters m and e.
This procedure needs getting used to but it is less complicated than it would seem at
a first glance because we only need the Feynman amplitudes to order � relative to the
Born approximation. This inversion procedure is always possible iteratively and the
renormalisation program then in principle is complete at the one-loop level. All QED
amplitudes (not only the one for Compton scattering) and consequently all experi-
mentally accessible quantities like cross sections then only contain the measurable
quantities m and e.

Now comes the snag. As they stand, the functions (6.4) are meaningless because
the one-loop corrections are infinite. In the renormalisation program sketched above,
the divergences of perturbation theory had no reason to evaporate. In the manifestly
Lorentz invariant perturbation theory represented by Feynman diagrams, each closed
loop comeswith a four-dimensional integration overmomenta. These integrations are
in general divergent because they range from−∞ to+∞ (arbitrarily high energies!).
In perturbation theory renormalisation must therefore always be preceded by a so-
called regularisation limiting the range of themomentum integration. Thismay sound
almost as arbitrary as the methods of the old perturbation theory in the 1930s. That
is true to the extent that many different regularisation procedures can be employed.
However, there is an important difference. In the old perturbation theory one just
dropped the terms eliminated by regularisation. In contrast, with the new methods
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of the late 1940s regularisation is always accompanied by renormalisation. In the
renormalised amplitudes one can then lift the constraints imposed by the chosen
regularisation method. As first shown by Tomonaga and Schwinger in the one-loop
approximation, in this way well-defined finite amplitudes, which are independent
of the regularisation procedure and which depend only on the physical parameters
m and e, are obtained. The method of renormalisation can also be interpreted in
the following way. The unknown structure of physics at highest energies (smallest
distances) only resides in the renormalised parametersm and e. Consequently, those
parameters cannot be calculated in the framework of QED and must be determined
experimentally. Soon after Tomonaga and Schwinger, Dyson showed in 1949 that
the renormalisation procedure works to all orders of perturbation theory. The article
of Dyson also contains a criterion which interaction terms lead to renormalisable
quantum field theories. The interaction term of QED in the Lagrangian (5.1) satisfies
Dyson’s criterion and thus QED belongs to the class of renormalisable quantum
field theories. For their fundamental contributions to the perturbative treatment of
quantumfield theories, Tomonaga, Schwinger and Feynman received theNobel Prize
in 1965. Dyson had the bad luck to come away empty-handed because the Nobel
Prize of a given year is attributed to at most three scientists.

The new renormalisation program was immediately applied by several authors
(cited in Weinberg 1995, p. 31) to the calculation of the Lamb shift. In one-loop
approximation, all (divergent) subdiagrams vertex correction (Fig. 6.1), self-energy
correction (Fig. 6.2) and vacuum polarisation (Fig. 6.3) contribute, but the unambigu-
ous final result is finite and in excellent agreement with the experimental value dis-
played in Fig. 6.4. The successful calculation of the Lamb shift and of the Schwinger
correction to the magnetic moment of the electron (Chap.5) gave QED a tremendous
boost. Some even thought that QED had actually been resuscitated by those develop-
ments. In their famous textbook on quantum field theory (Bjorken 1965) the authors
declared: “QED has achieved a status of peaceful coexistence with its divergences.”

In spite of those undeniable successes, the renormalisation program was not ac-
cepted by all physicists as solution of the divergence problem of QED. Among them
were especially physicists of the older generation like Dirac and Wigner who crit-
icised that “the infinities are only swept under the rug.” More surprising was that
even Feynman declared as late as 1961 at the occasion of the 12th Solvay Confer-
ence (Feynman 1961): “I do not subscribe to the philosophy of renormalisation.”
Maybe, philosophy was not Feynman’s strong point. But also in the Soviet Union
the renormalisation program andwith it quantum field theory altogether were viewed
skeptically in general. The influential physicists Lev Landau and Isaac Pomeranchuk
argued on the basis of renormalisation group equations, which will come up again
in Chap.8 in the discussion of quantum chromodynamics, that for asymptotically
high energies there would again be divergences. But those energies would be beyond
good and evil, in fact much higher than even the Planck energy (Appendix A) where
quantum gravity is expected to play a decisive role. Nowadays it is not even possible
to frighten students with this so-called Landau pole, often more mysteriously called
Landau ghost.
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But there was yet another reason for the widespread dissatisfaction with the renor-
malisation program of QED. Although the heretics had to accept reluctantly the stun-
ning successes of QED perturbation theory, they could rightly refer to the situation
of the strong and weak nuclear forces. In the 1920s and 1930s it was recognized that
in addition to the electromagnetic interaction also the strong interaction, which holds
protons and neutrons together in atomic nuclei, and the weak interaction responsible
for instance for β decay had to be taken into account. For the β decay Fermi had ac-
tually formulated a quantum field theory (Fermi 1934), but it did not satisfy Dyson’s
criterion and was therefore not renormalisable. On the other hand, for the strong
interaction one could hardly imagine that a perturbative treatment could make sense
at all just because of the strength of the nuclear force. Was QED maybe a unique
stroke of luck? In the following two chapters we will see how the already given up
quantum field theory arose like the famous phoenix from the ashes to serve as the
basis of today’s Standard Model of all fundamental interactions except gravity.
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7FromBetaDecay to Electroweak
GaugeTheory

Beta Decay

Of the four fundamental interactions, the weak interaction is in a certain sense
the most enigmatic. The two macroscopic interactions, gravitation and electromag-
netism, are both familiar to us, at least in the classical version. The strong nuclear
force to be treated in the following chapter ensures that nucleons hold together in
atomic nuclei. Thus, it is absolutely essential for the existence of matter as we know
it. But what do we “need” the weak interaction1 for? It is of extremely short range
and at low energies by far the weakest of the three microscopic interactions. That the
weak interaction is responsible for β decay will hardly impress the famous man on
the street. But actually also theweak interaction is vital for life on our planet.Without
it the production of energy in stars and thus also in the sun would not be possible
because the weak interaction plays an essential role in nuclear fusion responsible for
energy production. Unlike the sun light, we do not notice the approximately 6.6·1014
neutrinos coming from the sun and hitting the earth per square meter and second. Of
course, this is due to the fact that the weak interaction lives up to its name.

Soon after the discovery of radioactivity by Becquerel, Rutherford realised that
there must be at least two different sources of radioactivity that he called α and β
radiation. In 1900 Becquerel himself carried out the first measurements of the ratio
between charge and mass of the β particles. He concluded that the particles were
electrons aswas confirmed inmore precisemeasurements during the following years.
Rutherford and Soddy noticed that radioactivity is not a chemical process but a purely

1For the nuclear forces physicists use the term “interaction(s)” both in the singular and in the plural,
whereas for gravitation and electromagnetism only the singular is common. This may have to do
with the fact that in the Standard Model there are several quanta for the strong and weak nuclear
forces (eight gluons and W±, Z , respectively), while there is only one photon and probably only
one graviton.
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atomic phenomenon. In the predominant picture of the atom at the time, Thomson’s
plum-pudding model (Chap.2), one could not specify where the β electrons actually
came from. But after the establishment of Rutherford’s atomic model the question
became more pressing. On the basis of his own atomic model, Bohr concluded that
the β electrons could not originate in the atomic shell because their energy was
much too high. Thus, β decays must take place in the atomic nucleus. Around 1920,
Rutherford realised that the nucleus of the hydrogen atom is contained in all atomic
nuclei and he therefore called it proton (Chap.8). Thus, in an electrically neutral
atom there would have to be the same number of protons and electrons. However, if
one deduced the number of protons in the nucleus from the number of shell electrons,
there was a clear mass deficit for all elements except hydrogen. The total mass of
the protons is usually at most half of the atomic mass. Since neutrons were not
yet available the physicists concluded that there must be additional protons in the
nucleus. Their positive charge would have to be compensated by a corresponding
number of electrons in the nucleus. Apparently, those electrons were emitted in β
decays.

One could have realised already in 1914 when James Chadwick analysed the
energy of β electrons (Chadwick 1914) that something was wrong with that simple
model. According to Einstein, the mass difference between the initial and the final
nucleus is available (multiplied by c2, see (Eq.2.5)) for the energy of the emitted
electron. That would mean that for any given initial and final nuclei all electrons
emitted in β decays would have the same energy. But in his experiment Chadwick
noticed that the electrons were emitted with very different energies, i.e., they had
a continuous energy spectrum. As this result appeared to contradict the sacrosanct
conservation of energy, it was not generally accepted for several years. But in the
1920s the evidence increased that Chadwick’s measurements had been correct after
all. In a precision experiment for the β decay 210

83 Bi → 210
84 Po + e−+ ?, C. D. Ellis

and W. A. Wooster found that in spite of a mass difference of 1050 keV/c2 between
the two nuclei the average energy of the decay electrons was only 350keV (Ellis
and Wooster 1927). At the end of the 1920s Bohr speculated that in the microcosm
energy conservation might only hold on average, but that an individual decay could
violate the energy balance. But there also was a problem with the conservation of
angular momentum if the electron with its spin 1/2 were the only decay product in
addition to the final nucleus. In addition, there also were problems with quantum
statistics. According to the general picture of the nucleus at the time, the nucleus of
the nitrogen isotope 14

7 N should contain 14 protons and 7 electrons. Because of the
odd number of particles with spin 1/2 the nitrogen nucleus would have half-integer
spin and should therefore satisfy Fermi-Dirac statistics (Chap.4). But the experiment
actually showed that the 14

7 N nucleus had integer spin and was therefore a boson.2

Finally, it was difficult to reconcile with quantum mechanics and in particular with
the uncertainty relation that particles as light as electrons could be confined in such
a small volume as an atomic nucleus.

2The same problem existed for the 6
3Li nucleus.
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Fig. 7.1 Feynman diagram
for the β decay of the
neutron in Fermi theory

n e−

p

νe

In December 1930 Pauli writes his famous letter to the “Dear radioactive ladies
and gentlemen” who gathered for a meeting in Tübingen. He proposes as a solution
of the various problems that the electron in β decay is accompanied by an additional
particle that would have to be electrically neutral and have spin 1/2. Pauli named the
postulated particle neutron but soon the name neutrino (the small neutron) proposed
by Fermi was generally accepted. In the presence of this neutrino, the conservation
of both energy and angular momentum would be restored. The mass difference
between initial and final nuclei determines the total energy of the decay products.
This energy is now shared between electron and neutrino, hence the continuous
energy spectrum of the electron. Because the neutrino has spin 1/2 the conservation
of angular momentum is also guaranteed. Pauli also writes in his letter that he does
not dare to publish his idea for the time being. He closes with the regret that he cannot
attend the meeting in Tübingen because of a ball in Zürich. Half a year later, at a
meeting of the American Physical Society in Pasadena, California in July 1931, Pauli
himself presented his neutrino hypothesis but he still prohibited any publication.Only
his talk at the 7th Solvay Conference in Brussels in 1933 could finally be published
(Pauli 1934).

The discovery of the neutron by Chadwick was the next important step towards
understanding β decay (Chadwick 1932). Together with Pauli’s neutrino hypothesis,
a completely new picture of the atomic nucleus emerged as the starting point of
modern nuclear physics. The mysterious bound states of protons and electrons in
the nucleus that had been invented to understand atomic masses were no longer
needed. Atomic nuclei consist of protons and neutrons only. In β decay electrons
and neutrinos are produced in the decay of neutrons:

n → p + e− + νe . (7.1)

On that basis Fermi formulated the first quantum field theory of β decay at the end
of 1933, the so-called 4-Fermi theory (Fermi 1934). Although Feynman diagrams
did not yet exist, one can characterise the Fermi theory of β decay with the diagram
in Fig. 7.1.

The corresponding interaction term does not satisfy Dyson’s criterion (Chap.6)
and hence the Fermi theory is a nonrenormalisable quantum field theory. However,
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because of the weakness of the interaction hardly anybody thought of calculating
higher orders in perturbation theory at the time and so the nonrenormalisability was
not viewed as a serious deficiency of the Fermi theory.

The main problem lay elsewhere, namely in the structure of the 4-Fermi theory
itself. Some nuclear decays could be well described with the Fermi theory while for
others there was a clear discrepancy between theory and experiment. The original
theory of Fermi was a pure vector theory in analogy to quantum electrodynamics. In
a first attempt the theory was expanded with (scalar and tensor) terms, which as the
original version were compatible with parity and charge conjugation (Chap. 4). But
also that did not turn out to be the solution.

In the meantime new particles had been discovered. In addition to muons, the
more massive siblings of the electrons, especially the mesons began to populate the
particle zoo. Almost all those particles had also weak decay channels. For instance,
muons decay almost exclusively into electrons and two neutrinos3:

μ− → e− + νμ + νe . (7.2)

Here we have anticipated that six years after the discovery of the electron neutrino
(Cowan et al. 1956) also the muon got its own neutrino (Danby et al. 1962). It turned
out that in the muon decay (7.2) the strength of the interaction was almost identical
with the one governing the β decay of the neutron (7.1), a first indication of the
universality of the weak interaction. This universality is a characteristic feature of
gauge theories.

Parity Violation andV–ATheory

After the lightest mesons, the pions, also two heavier mesons were found at the end
of the 1940s, which apparently decayed into pions due to the weak interaction. The
(then) so-called θ meson decayed into two pions (θ+ → π+ + π0), the τ meson
into three pions (τ+ → π+ + π+ + π−). Strangely enough, the θ and τ mesons
seemed to have practically the same mass and even the same lifetime. This was a
strong argument suggesting that the two particles were actually one and the same
particle. The (inner) parity of the pion was already known: Pπ = −1, the pions are
so-called pseudoscalar particles. If parity were a symmetry of the weak interaction,
the parity of the θ meson would then have to be positive: Pθ = +1. On the other
hand, from a careful analysis of the energy distribution of the three pions in the
decay of the τ meson, the British physicist Richard Dalitz concluded that the parity
would have to be negative in this case (Dalitz 1953): Pτ = −1. Then there were only
two possibilities: either there was an incredible coincidence and θ and τ were two
different particles, or parity is violated by the weak interaction.

3Since neutrinos are electrically neutral and unaffected by the strong interaction, they are unique
messengers of the weak interaction.
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Invariance with respect to space reflection had been confirmed in many investi-
gations of atomic and nuclear spectra but this concerned only electromagnetic and
strong interactions. Thus, Tsung-Dao Lee and Chen Ning Yang proposed that the
question of parity invariance of the weak interaction should be clarified experimen-
tally (Lee and Yang 1956). Until then, most other physicists were convinced that all
fundamental interactions were parity invariant. The mere possibility of P violation
scandalised Pauli: “Gott ist doch kein schwacher Linkshänder.”4 The experiments
proposed by Lee and Yang were carried out without further delay. The results (Wu
et al. 1957;Garwin et al. 1957;Friedman and Telegdi 1957) were unambiguous:
parity is violated by the weak interaction and the θ-τ puzzle was solved. The two
seemingly different particles were indeed one and the same particle that is known as
the charged K meson K+ nowadays.

Although Feynman had just lost a bet because he had backed the wrong horse of
parity conservation, he was among the first to draw the right conclusions. Richard
Feynman and Murray Gell-Mann and, independently, Robert Marshak and E. C. G.
Sudarshan modified the original Fermi theory from a V(ector) to a V(ector)–A(xial-
vector) theory (Feynman and Gell-Mann 1958;Marshak and Sudarshan 1958). In
doing so, they took into account that the measured parity violation was in a certain
sense maximal. This can best be seen in the status of neutrinos in the V–A theory.
As any particle with spin 1/2, the neutrino has two possible alignments. The spin
can either be aligned with the momentum (right-handed neutrino) or opposite to it
(left-handed neutrino). However, in the V–A theory only the left-handed neutrino is
represented and because of the CPT theorem also the right-handed antineutrino. In
this sense, P violation and the asymmetry between left and right are maximal.

This asymmetry can nicely be illustrated with the decay of the charged pion that
decays almost exclusively into a muon and its associated neutrino: π+ → μ+ + νμ

and π− → μ− + νμ, respectively. Let us consider for definiteness the decay of the
negative pion in its rest frame:

π−( �P = �0) → μ−(− �p) + νμ( �p;R) . (7.3)

In the rest systemof the pion ( �P = �0) themomenta of themuon and of its antineutrino
are opposite to each other. The spin of the antineutrino points in the direction of its
momentum �p because according to the V–A theory the antineutrino is right-handed
(R). What happens under a parity transformation? The momenta change sign, the
spin (as an axial-vector) remains the same and so R(ight) and L(eft) are interchanged.
For our pion decay this means:

π−( �P = �0) → μ−(− �p) + νμ( �p;R)
P=⇒ π−( �P = �0) → μ−( �p) + νμ(− �p;L) . (7.4)

But in the V–A theory there are no left-handed antineutrinos, i.e., the process on the
right side of (7.4) simply does not occur and parity violation is indeedmaximal. Let us
also have a look at the implication of charge conjugationC,whichmakes antiparticles

4After all, God is not a weak left-hander.
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Fig. 7.2 Feynman diagrams for muon decay: V–A theory (left diagram) versus Standard Model
(right diagram)

out of particles and vice versa, but leaves momenta and spins untouched. Applying
the combined5 CP transformation to the original decay (7.3) or only C to the right
side of (7.4), we obtain the following configuration:

π−( �P = �0) → μ−(− �p) + νμ( �p;R)
CP=⇒ π+( �P = �0) → μ+( �p) + νμ(− �p;L) . (7.5)

The process on the right side of (7.5) is now again a physical process. The positive
pion does indeed decay into a μ+ and a left-handed neutrino, and the probabilities
of the decays of π+ and π−, i.e. their partial decay rates, are equal. The V–A theory
is invariant under CP transformations. Till 1964 nature seemed to respect this pre-
diction, when in decays of the neutral K mesons a small violation of CP symmetry
was observed (Christenson et al. 1964). Later on, CP violation was also detected in
other decays. We will return to this issue in connection with the Standard Model in
Chap.9.

The V–A theory provides the right description of weak decays, but only at low-
est order in perturbation theory (Born approximation). When experimental results
becamemore precise, the question of higher-order corrections became acute.Asmen-
tioned above, the Fermi theory and with it the V–A theory are not renormalisable.
Therefore, higher-order corrections could not be tackled with the methods known
from QED. But what was the deeper reason for this difference? In 1935 the Japanese
physicist Hideki Yukawa suspected (Yukawa 1935) that analogous to the photon in
QED there would also be quanta of the strong and weak interactions. Although in
1935 only the β decay of the neutron (7.1) was known, we can illustrate Yukawa’s
suggestion also with the related muon decay (7.2) in Fig. 7.2. Yukawa thereby antici-
pated an essential aspect of the electroweak gauge theory as it is realised today in the
Standard Model. In analogy to the fundamental QED vertex diagram in Fig. 5.1, the
four-fermion vertex of the V–A theory is replaced by the vertex diagram in Fig. 7.3.

5The order of transformations does not matter, CP is as good as PC.
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Fig. 7.3 One of the
fundamental vertex diagrams
of the electroweak gauge
theory (� stands for the
leptons e, μ and τ ); the weak
coupling constant gW takes
on the role of the elementary
charge e in QED

W−

ν�

�−
gW

Yukawa also realised that the range of an interaction is related to the mass of the ex-
changed particle, more precisely to the Compton wave length of the particle. QED is
therefore an interaction with infinite range because the photon is massless and that is
why we “feel” the electromagnetic interaction in everyday life. In contrast, the weak
nuclear force has a very short range and thus the mass MW of the intermediate vector
boson, as it was called originally, must be relatively big. Yukawa also knew that the
strength of the weak interaction is governed by the ratio g2W /M2

W , with the weak
coupling constant gW in Fig. 7.3. Therefore, this ratio can for instance be calculated
from the muon lifetime.

To deduce the mass of the W boson from the muon lifetime, we need a value
for gW . Since the electroweak gauge theory is addressed in the title of this chapter,
we may as well try the hypothesis that gW is of the same order of magnitude as the
elementary charge e. With gW ∼ e the muon lifetime implies MW ∼ 100GeV/c2.
Since 1983 we know that our hypothesis was not bad at all.6 The corresponding
Compton wave length λW = �/MWc is then λW � 2 · 10−18 m, substantially
smaller than even the typical nuclear dimension 10−15 m. Incidentally, the structure
of the V–A theory also implies that the W boson has spin 1, another similarity with
the photon.

The so-called unitarity problem of the V–A theory is related to the nonrenormal-
isability of the Fermi theory. Let us consider the scattering process

νμ + e− → μ− + νe , (7.6)

related by crossing (Chap.5) to the muon decay (7.2). Because of the point-like 4-
Fermi interaction (left diagram in Fig. 7.2) the cross section σ(νμ + e− → μ− + νe)
grows quadratically with the center-of-mass energy E . The cross section therefore
becomes arbitrarily large for high energies. At some point this must lead to a contra-
diction with the conservation of probability in quantum field theory. The calculation
gives rise to the unitarity bound of the V–A theory E ∼< 300GeV, nearly the same
order of magnitude as MWc2. The proposal of Yukawa solves the unitarity problem.
Calculating the scattering amplitude for the process (7.6) with the (crossed version
of the) right diagram in Fig. 7.2, the unitarity problem disappears just as in all QED
scattering processes.

6The present value for the mass of the W boson is MW = 80.379(12)GeV/c2 (Chap.9).
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Electroweak Unification

Before considering a unification of theweak and electromagnetic interactions, several
severe obstacles had to be overcome that seemed to stand in the way of such a
unification.One suchobstaclewas the issue of parity,which is a symmetry ofQEDbut
is even maximally violated by the weak interaction. As the example of the neutrinos
shows, gauge bosons (in this case W bosons) can interact differently with left- and
right-handed components of fermion fields.7 This also applies to charged fermions,
both to leptons and quarks. Somewhat exaggerating, parity violation is actually the
normal situation in gauge theories. Only if the interactions of the corresponding
gauge bosons do not distinguish between left- and right-handedness, parity can be
conserved. This is the case in both QED and QCD (Chap.8).

W bosons are electrically charged and are therefore also subject to the electro-
magnetic interaction. What is the form of these interactions in a unified electroweak
quantum field theory? The following argument does not correspond to the actual
historical development, but was put forward only a posteriori. Nevertheless, it is a
beautiful example of enlightening theoretical deliberations (Llewellyn Smith 1973).
Requiring that not only the scattering νμ + e− → μ− + νe is compatible with uni-
tarity, but all scattering processes with fermions (leptons and quarks) and vector
bosons (photon, W±), the underlying quantum field theory must have the structure
of a so-called non-abelian gauge theory. Such theories were first formulated by C. N.
Yang and Robert L. Mills (Yang and Mills 1954). They are a generalisation of QED
with the abelian gauge group U (1) and the photon as single gauge boson (Chap.5)
to a quantum field theory with a (more complicated) non-abelian gauge group and
several gauge bosons, which can interact with each other as in the case of photon
and W boson.

In the original version of their theory, Yang and Mills actually had in mind the
strong interactions of mesons (pions, kaons, vector mesons) but this idea was soon
put aside. The main reason was that gauge invariance would require massless vector
mesons, which still do not exist today. For an application of Yang-Mills theories
to electroweak unification, this circumstance once again seemed to stand in the
way. Indeed, the photon is massless as a decent gauge boson should be, but this
is certainly not the case for the W boson, which is after all responsible for the
short-range weak interaction. It seemed that theory had again reached an impasse.
A unitary, renormalisable quantum field theory of electroweak interactions requires
the invariance of the theory under a (non-abelian) gauge symmetry, which seemed to
imply the existence ofmasslessW bosons, in striking contradictionwith the structure
of the weak interaction.

The way out of this dilemma was due to the recognition that in quantum field
theory, unlike in classical physics, there are two different ways how a symmetry

7For massive fermions, theoreticians use the notion of chirality instead of handedness for reasons
of Lorentz invariance. Strictly speaking, the two concepts agree only for massless fermions. Nev-
ertheless, here we use for simplicity for all fermions, including massive ones, the more descriptive
handedness.
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Fig. 7.4 Schematic
representation of spin
alignment in Weiss domains
of a ferromagnet

can manifest itself. In both manifestations the field equations and the Lagrangian
remain unchanged under symmetry transformations. How the state of lowest en-
ergy (ground state) behaves under symmetry transformations, is responsible for the
difference between the two variants of symmetry implementation in quantum field
theory. The physics of the ferromagnet is an instructive example. In the absence of an
external magnetic field, the underlying theory of the ferromagnet does not single out
a special direction, the theory is rotationally invariant. Nevertheless, below a critical
temperature andwithin certain domains, the ground state is characterised by a certain
direction along which the spins are aligned (Weiss domains, Fig. 7.4). Because of
the rotational invariance of the underlying equations, each direction is equally good,
it is apparently chosen “spontaneously”. This has led to the notion of spontaneous
symmetry breaking. The name is a bit misleading because the symmetry is not really
broken. After all, the field equations and the Lagrangian are still invariant. This fact
will be important for the realisation of gauge symmetry in the electroweak gauge
theory.

In particle physics the phenomenon of spontaneous symmetry breaking was first
investigated by Yoichiro Nambu who had in mind a realisation in the context of the
strong interaction (Nambu 1960). Motivated by Nambu, Jeffrey Goldstone showed
in the following year that in general massless particles (Nambu-Goldstone bosons)
occur together with spontaneous symmetry breaking (Goldstone 1961). Incidentally,
this explains why pions are the lightest hadrons (strongly interacting particles). But
for electroweakunification theGoldstone theoremseems to be counterproductive.We
do not need any massless bosons but an explanation for the mass difference between
photon and W boson. This explanation was provided by Robert Brout and François
Englert (Englert and Brout 1964) and, independently, by Peter Higgs (Higgs 1964).
While in theorieswith spontaneously broken global symmetriesmassless particles do
indeed occur, the Nambu-Goldstone bosons of a gauge symmetry (local symmetry)
are not physical particles but they can instead bestow a mass upon some of the orig-
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inally massless gauge bosons. Without the appropriate mathematical background,
this may sound a bit like hocus-pocus but the counting of degrees of freedom makes
the mechanism at least more plausible. As mentioned earlier, all massless particles
with spin �= 0 like the photon only have two degrees of freedom. But a massive
vector boson like the W boson (spin 1) has three degrees of freedom – in general
2 S + 1 states for spin S. The B(rout)-E(nglert)-H(iggs) mechanism precisely fur-
nishes the missing degree of freedom (also called “would-be-Goldstone boson” in
the literature) to make a massive W boson out of a massless one.

The phenomenon actually also occurs in the physics of condensed matter, namely
in superconductors (Anderson 1958). In certain metals so-called Cooper pairs can
form, i.e. nonlocal bound states of two electrons with opposite momenta and spin
directions. Effectively, those bound states are then bosons with charge −2 e that
can condense in the ground state at sufficiently low temperatures (Bose-Einstein
condensation, Chap.4). This ground state has therefore negative charge, which
breaks the U (1) invariance of QED spontaneously. But where are the massless
Nambu-Goldstone bosons of superconductivity? The answer is known as Meißner-
Ochsenfeld effect. An applied magnetic field cannot propagate freely in a supercon-
ductor but it can only penetrate up to a certain penetration depth. In the language of
quantum field theory, this penetration depth corresponds to a finite Compton wave
length and therefore to an apparent mass – of course only in the superconductor,
outside the photon is again massless as it should be. Since QED is a gauge theory
with the gauge group U (1), also in a superconductor the Nambu-Goldstone boson
is “eaten up” by the photon to acquire an apparent mass.

Thus all necessary preconditions for a consistent quantum field theory of elec-
troweak interactionswere in place. The renormalisability of such a theorywas proved
by the Dutch physicists Gerard ’t Hooft and Martinus Veltman at the beginning of
the 1970s (’t Hooft 1971; ’t Hooft and Veltman 1972). This was the start of a fruitful
collaboration between theory and experiment where ever more precise experiments
confirmed ever more detailed theoretical predictions. A first highlight of this pe-
riod lasting until today was the detection of the predicted gauge bosons W±, Z in
experiments at CERN at the beginning of the 1980s (for more details, see Chap.9).
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8QuantumChromodynamics:Quantum
FieldTheory of the Strong Interaction

Strong Nuclear Force

As early as 1815, theEnglish chemistWilliamProut suspected on the basis of existing
measurements of atomicmasses that all atoms are built up of hydrogen atoms (Prout’s
hypothesis). In tribute to him, Rutherford proposed in 1920 at ameeting of the British
Association for the Advancement of Science that the nucleus of the hydrogen atom
should be called prouton or proton. Apparently, proton was more popular.

A few years earlier, Rutherford had recognized that the hydrogen nucleus does
indeed occur in all nuclei but that additional, electrically neutral constituents must be
contained in the nuclei in order to understand nuclear masses. He called those con-
stituents neutrons and pictured them as bound states of protons and electrons. Two
reasons seemed to support such a picture. The mass of the neutrons was comparable
with the proton mass and the negatively charged electrons would compensate the
electrostatic repulsion of the protons at least to some extent. Scattering α particles
on protons, Rutherford had noticed deviations from the Coulomb law (electrostatic
repulsion between α and p) but he associated those deviations with the complex
nature of the α particles. The first published indication for the existence of an addi-
tional “strong nuclear force” is due to Rutherford’s assistant James Chadwick and his
collaborator Etienne Bieler (Chadwick and Bieler 1921). They also had investigated
the scattering of α particles on protons. For slow α particles, the angular distribution
of the recoil protons was as expected (Rutherford scattering) but for more energetic
α particles clear deviations showed up: “It is our task to find some field of force
which will reproduce these effects.”

But that was easier said than done. As discussed at the beginning of the previous
chapter in connection with β decay, during the 1920s more and more problems
turned up for the popular model of the atomic nucleus consisting of protons and
electrons (nuclear spins, uncertainty relation, etc.). All those problems evaporated
after the discovery of the neutron by Chadwick (1932). The atomic nucleus consists
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of protons and neutrons only – neither electrons nor neutrinos in the nucleus. Thus,
theremust exist a “strong nuclear force” preventing protons fromflying apart because
of the electrostatic repulsion. In the same year Heisenberg introduced the concept
of isospin symmetry of the strong interaction to explain the approximate equality
of proton and neutron masses. It is important to realise that isospin symmetry not
only explains the near equality ofmasses but also the approximate equality of proton-
proton, proton-neutron and neutron-neutron forces. During the following years, those
predictions were confirmed in investigations of nuclear spectra.

But what is it that keeps protons and neutrons together in atomic nuclei? In the
same article where Yukawa had postulated a carrier for the weak nuclear force (to-
day’s W boson, Chap.7), he also suggested that the strong nuclear force could be
generated by the exchange of a hypothetical particle with spin 0. The mass of this
particle would have to be about 200 times bigger than the electron mass and that is
why Yukawa’s particle was originally called mesotron (between electron and pro-
ton). In the course of time, the mesotron lost three letters and turned into a meson,
following a suggestion of Heisenberg. Already in 1937 Carl Anderson and Seth Ned-
dermeyer detected a particle with approximately the corresponding mass in cosmic
rays (Anderson and Neddermeyer 1937). But this particle hardly interacted with nu-
clearmatter and therefore could not beYukawa’smeson.Anderson andNeddermeyer
had actually detected muons, the more massive siblings of electrons. But ten years
later, Powell et al. observed charged pions (π± mesons) in cosmic rays using pho-
toemulsions (Lattes et al. 1947). From that date on, the physics of mesons has been
an integral part of nuclear physics. On the basis of nonrelativistic potential models
involving mesons, significant progress was made in the understanding of the forces
between nucleons. Those potentials, attractive at long distances (pion exchange) and
strongly repulsive at short distances, provided satisfactory explanations of nuclear
structure and of nuclear reactions. In particular, it became possible to understand the
mechanisms for the production of energy in stars and therefore the luminosity of the
sun (Bethe 1938;von Weizsäcker 1937).

However, those significant achievements were restricted to reactions where nu-
cleons had small relative velocities. For processes with relativistic nucleons, nuclear
potentials were inadequate just as one cannot describe Compton scattering with the
Coulomb potential. In principle, there was no problem in constructing quantum field
theories with nucleons and pions that were even renormalisable. But it is no accident
that the strong interaction carries its name. Perturbation theory, so successful for
electromagnetic and weak interactions, was simply not applicable because of the
strength of the strong interaction.

In spite of the undeniable successes of quantum field theory (Chaps. 4, 5, 6 and
7), several physicists therefore speculated that the strong interaction might not be
described with a local quantum field theory. Here are two opinions of prominent
skeptics.

• Landau: “It is well known that theoretical physics is at present almost helpless in
dealing with the problem of strong interactions. We are driven to the conclusion
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that the Hamiltonian method for strong interactions is dead and must be buried,
although of course with deserved honour.” (Landau 1960)

• Marvin Goldberger: “My own feeling is that we have learned a great deal from
field theory …that I am quite happy to discard it as an old, but rather friendly,
mistress who I would be willing to recognize on the street if I should encounter
her again.” (Goldberger 1961)

In the 1960s people were therefore looking for alternatives to quantumfield theory
to get a handle on the strong interaction. At that time, more and more strongly inter-
acting particles (hadrons) were found, which could not possibly all be fundamental.
This impression prompted the launching of “nuclear democracy”: all hadrons are
equal and it therefore makes no sense to set up a quantum field theory with only
a few of them as fundamental fields. At that time, this idea was politically abso-
lutely correct but the implementation, called S-matrix theory or bootstrap method
(Chew 1962), suffered the same fate as the student movement of the late 1960s.
The great expectations could not be fulfilled. The restriction to general properties of
the S-matrix, which were expected to lead to measurable predictions by means of
self-consistency conditions (bootstrap!), was not effective in the end. A severe blow
to S-matrix theory was the realisation that the elastic scattering of pions becomes
weaker at low energies. This fact was in striking contradiction to basic assumptions
of S-matrix theory (Weinberg 1999).

From the QuarkModel to Asymptotic Freedom

A different approach to the physics of hadrons was advocated especially by Gell-
Mann. His strategy consisted in extracting certain algebraic relations from quantum
field theoretic models, which were then no longer taken seriously. Gell-Mann de-
scribed this “recipe” in the following way (Gell-Mann 1964a): “We construct a
mathematical theory of the strongly interacting particles, which may or may not
have anything to do with reality, find suitable algebraic relations that hold in the
model, postulate their validity, and then throw away the model. We may compare
this process to a method sometimes employed in French cuisine: a piece of pheasant
meat is cooked between two slices of veal, which are then discarded.”

This recipe was quite successful, in particular for the formulation of the quark
model (Gell-Mann 1964b;Zweig 1964). All hadrons (mesons and baryons) known at
the time could be understood as bound states of three fictitious constituents (quarks
u, d, s) with peculiar electric charges (Chap.9). For instance, the proton consists
of two u quarks and one d quark (p∼ uud), while the negatively charged pion
corresponds to a state with one anti-u quark and one d quark (π− ∼ ud). Strangely
enough, these quarks could not be isolated experimentally. The underlying dynamics
of the quark model remained a mystery. In the spirit of his culinary philosophy, Gell-
Mann insisted till the beginning of the 1970s that the quarks were purely hypothetical
quantities (“mathematical entities”) without physical reality. Another success story
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Fig. 8.1 Schematic
representation of deep
inelastic electron-nucleon
scattering e− N → e− X . In
the cross section one sums
over all possible hadronic
final states X where the total
charge of X equals the
nucleon charge
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was current algebra that we understand today as a consequence of the approximate
chiral symmetry of quantum chromodynamics. The previously mentioned analysis
of pion-pion scattering at low energies was conducted in the framework of current
algebra. In spite of these successes deeper insights into the dynamics of the strong
interaction were lacking.

As it is often the case, experiment (SLAC–MIT, Breidenbach et al. 1969) provided
the decisive hints. In the so-called deep inelastic scattering of leptons (electrons,
muons, neutrinos) on nucleons (Fig. 8.1), the cross sections displayed an increasingly
simple structure at high energies and for large transversemomenta (Nobel Prize 1990
for Jerome Friedman, Henry Kendall and Richard Taylor). Under those conditions,
the nucleons appear as collections of free particles, which were called partons by
Feynman. The quarks of Gell-Mann and Zweig were obvious candidates for those
partons. But this generated a seemingly intractable dilemma for a quantum field
theory of the strong interaction.Howcould the quarks be so strongly bound inmesons
and baryons that they could not be isolated as free particles, if on the other hand they
behaved as quasi-free particles in deep inelastic scattering? This seemed to be yet
another argument in favour of the view that the quarks were purely mathematical
constructs without physical reality.

That the strength of an interaction may depend on energy was actually a well-
known phenomenon in QED. An illustrative explanation of the so-called charge
screening is shown in Fig. 8.2. In QED there are vacuum fluctuations of virtual
electron-positron pairs (Chap.5) that screen the real charges. The greater the distance
between two real charges (electrons in Fig. 8.2), the more they are screened by the
virtual e+e− pairs. Therefore, the effective charges responsible for the strength of
the interaction decrease with increasing distance. Conversely, the effective charges
increase the closer they come. In quantum field theory smaller distances correspond
to higher energies and vice versa. QED is therefore denoted as ultraviolet unstable
because the strength of the electromagnetic interaction gets larger with increasing
energy (decreasing distance). Incidentally, this is the reason for the Landau pole in
QED mentioned at the end of Chap.6.

The phenomenon of charge screening is not restricted to QED. Theoreticians
investigated various renormalisable quantum field theories with regard to their be-
haviour at high energies. The aim was to find a theory where the high-energy be-
haviour is different from the one in QED because the results of deep inelastic scat-
tering pointed to an ultraviolet stability of the strong interaction. In other words, one
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Fig. 8.2 Charge screening in
QED: virtual
electron-positron pairs
screen the real charges
(vacuum polarisation)
(From Jegerlehner 2008;
with kind permission of
© Springer-Verlag
Berlin/Heidelberg 2008. All
Rights Reserved) + −

+
−+

−

+
−

+−

+
− +

−
+

−

+ −

+
−

+
−

+−

+−

+
−

+
−

+ −
r

−

−

was looking for an “asymptotically free” quantum field theory where the interaction
becomes weaker at higher energies. This search reached its climax in 1973. At the
beginning of that year a seeming setback happened when Tony Zee showed that
charge screening and therefore ultraviolet instability occur in a large class of quan-
tum field theories (Zee 1973). In the abstract of his paper he writes: “On the basis of
this result we conjecture that there are no asymptotically free quantum field theories
in four dimensions.” At this time, Sidney Coleman and David Gross worked on the
same problem (Coleman and Gross 1973), with the declared purpose to show that a
renormalisable quantum field theory cannot be asymptotically free. By that time both
theoretical and experimental results indicated that the electromagnetic and weak in-
teractions can be described by a unified Yang-Mills theory (Chap.7). Although Yang
and Mills had originally planned to apply their theory to the strong interaction, that
option was soon abandoned for various good reasons. To close the “loophole” in the
presumed incompatibility between renormalisable quantumfield theories and asymp-
totic freedom, the graduate students David Politzer (Harvard, supervisor Coleman)
and Frank Wilczek (Princeton, supervisor Gross) were assigned to investigate the
high-energy structure of non-abelian gauge theories. The outcome is part of the his-
tory of physics (Nobel Prize 2004 for Gross, Politzer andWilczek). In two successive
papers in the Physical Review Letters (Gross and Wilczek 1973;Politzer 1973), the
asymptotic freedom of Yang-Mills theories was proved as long as there are not too
many fermions in the theory (see below). The way was open for a non-abelian gauge
theory of quarks and gluons later to be called quantum chromodynamics (QCD).
Gross: “For me the discovery of asymptotic freedom was completely unexpected.
Like an atheist who has just received a message from a burning bush, I became an
immediate true believer.” (Gross 1999)
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Quark-Gluon GaugeTheory

At that time it was already known that each quark flavour u, d, s, . . . possesses
an additional degree of freedom called “colour”. Quarks come in three different
colours and each particle physicist may choose her (his) own favourite colours. Of
course, this colour has absolutely nothing to do with the optical colours. Colour
is not a fantasy of underemployed particle physicists but is supported by several
experimental indications. On the other hand, it was not clear before 1973 how many
gluons there are as carriers of the strong interactions. For group theoretic reasons
there are only two possibilities assuming that the quarks come indeed in three colours.
Either there is only one gluon just as there is only one photon in QED or the strong
interactions are mediated by eight gluons. Only in the latter case we have a non-
abelian gauge theory and, consequently, asymptotic freedom only holds in that case.
In an influential paper, Harald Fritzsch, Murray Gell-Mann and Heinrich Leutwyler
presented five arguments for an octet of gluons in the fall of 1973 (Fritzsch et al.
1973). Argument number four was the asymptotic freedom of non-abelian gauge
theories that had been discovered a few months earlier. For good reason, the year
1973 is therefore known as the year of birth of QCD.

Before we take a closer look at asymptotic freedom, we are going to confront
the Lagrangian of QED for the electron with the Lagrangian of QCD for one quark
flavour. To start with, we write the QED Lagrangian (5.1) in a more compact form
as

LQED = ψ (i D/ − me)ψ − 1

4
FμνF

μν . (8.1)

Here, D/ stands for γμDμ, where Dμ = ∂μ−i e Aμ is a so-called covariant derivative.
The QCD Lagrangian has a similar form:

LQCD =
3∑

i, j=1

qi
(
i D/i j − mqδi j

)
q j − 1

4

8∑

α=1

Gα
μνG

α,μν . (8.2)

The electron field ψ in Eq. (8.1) is replaced by three quark fields qi (i = 1, 2, 3
denote the three colours) of a given quark flavour. The covariant derivative Dμ,i j is
now a 3×3 matrix in colour space. The photon field Aμ is substituted by eight gluon
fields Gα

μ (α = 1, . . . , 8),

Dμ,i j = δi j∂μ + i

2
gs(λα)i j G

α
μ , (8.3)

multiplied by the so-called Gell-Mannmatrices1 λα. The Kronecker symbol δi j is an
explicit representation of the unit matrix in 3-dimensional colour space (δi j = 1 for

1The 3 × 3 matrices λα form a 3-dimensional representation of the Lie algebra of SU (3) in a
basis suitable for particle physics. This Lie algebra is characterised by the structure constants
fαβγ (α,β, γ = 1, . . . , 8) in (8.4).
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Fig. 8.3 Fundamental
quark-gluon vertex diagram
in QCD (without colour
indices)

G

q q

i = j , δi j = 0 for i �= j). In the Lagrangian (8.2) the Kronecker symbol indicates
that the three colours of a given quark flavour all have the same mass mq . Gauge
invariance requires a single coupling constant gs , i.e., all eight gluons couple with
the same strength to the quarks (universality, see also section “Extensions of the
Standard Model” in Chap.10).

The formal similarity of the Lagrangians (8.1) and (8.2) is due to the fact that
both theories are gauge theories.2 But QED is an abelian gauge theory (ultraviolet
unstable) with the gauge group U (1), whereas QCD is a non-abelian gauge theory
(ultraviolet stable = asymptotically free) with the gauge group SU (3). In particular,
this can be seen in the difference between the electromagnetic field strength tensor
Fμν and the gluonic field strength tensors Gα

μν (α = 1, . . . , 8):

Gα
μν = ∂μG

α
ν − ∂νG

α
μ − gs fαβγG

β
μG

γ
ν . (8.4)

While in an abelian gauge theory like QED the field strength tensor Fμν is linear in
the gauge field (Chap.5), gauge invariance in a non-abelian gauge theory requires
also terms quadratic in the gauge fields in the field strength tensors (8.4), multiplied
by the gauge-coupling constant gs .

The difference between QED and QCD also manifests itself in the fundamen-
tal vertices of the two theories. In QED there is only one electron-photon vertex
(Fig. 5.1). The analogue in QCD is the quark-gluon vertex in Fig. 8.3. Because both
gluons and quarks carry colour charge, in QCD there are two more fundamental
vertices (absent in QED because the photon is electrically neutral) that appear in
the second term of the Lagrangian (8.2) describing the self-interaction of gluons
(Fig. 8.4). As can be seen from the form of the gluonic field strength tensors (8.4),
these vertices correspond to terms in theQCDLagrangian (8.2) that are cubic or quar-
tic in the gluon fields and linear or quadratic, respectively, in the coupling constant
gs .

But why is QCD asymptotically free, in contrast to QED? With the current tools
of theoretical particle physics, this question can be answered in one afternoon in all

2M. Gell-Mann: “It’s all symmetries!”, private communication at a Viennese Heurigen, Sept. 2011.



84 8 Quantum Chromodynamics:Quantum Field Theory of the Strong Interaction

Fig. 8.4 3- and 4-gluon
vertex diagrams of QCD
(without colour indices)

details. It suffices to investigate the divergence structure of a few one-loop diagrams
to deduce the result by means of renormalisation group equations. It can be seen
as an irony in the history of physics that in a certain sense asymptotic freedom was
always hidden under the rug under which the divergences had supposedly been swept
(Chap.6).

Interpreting the vacuum of a quantum field theory as a polarisable medium
(Nielsen 1981), one can obtain a physical understanding of asymptotic freedom.
Unlike in a usual macroscopic medium, the product of permittivity ε and perme-
ability μ is always equal to one in a relativistic theory. A “normal” quantum field
theory like QED has ε >1 because of charge screening and so the vacuum can also
be viewed as a (colour) diamagnet (μ <1). In a non-abelian gauge theory like QCD
not only fermions (quarks in our case) carry a (colour) charge but also the quanta
of the interactions, in our case the “coloured” gluons. The gluons, which have spin
1 (gauge theory!) like the photon, act therefore like permanent magnetic dipoles
making the vacuum paramagnetic (μ >1). As a matter of fact, the charge screening
of the quarks and colour paramagnetism of the gluons act in different directions.
For the asymptotic freedom of a gauge theory with gauge group SU (Nc) the sign
of the expression 2 N f − 11 Nc matters where N f is the number of quark flavours.
The gauge theory in question is asymptotically free if and only if 2 N f − 11 Nc is
negative. Therefore, with three colours (Nc = 3) QCD is asymptotically free as long
as there are not more than 16 quark flavours. As nature seems to be getting along
with six quark flavours u, d, c, s, t , b (Chap.9), QCD is asymptotically free.

The message of the “burning bush” was not immediately acknowledged by all
particle physicists. But in the course of time, experimental indications accumulated
that the strength of the strong interactions actually depends on energy. In Fig. 8.5
the decrease of the coupling strength αs (in analogy to QED denoted as strong fine-
structure constant3) with energy is displayed. Over three orders of magnitude in the
energy, the theoretical prediction of QCD agrees with the various experimental re-
sults. The strong fine-structure constantαs is therefore known todaywith an accuracy
of 1%.

In the flowery language of particle physicists, the reverse side of asymptotic
freedom is sometimes called “infrared slavery”. For low energies (large distances),

3Since the discovery of asymptotic freedom at the latest, particle physicists are aware that coupling
constants are not constants in the usual sense but depend on energy.Nevertheless, the names coupling
constant, fine-structure constant, etc. are still being used.
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Fig. 8.5 Dependence of the
strong fine-structure constant
αs = g2s /(4π�c) on the
energy Q (in GeV). Note the
logarithmic scale for the
energy (From Tanabashi
et al. 2018; with kind
permission of © Particle
Data Group 2018. All Rights
Reserved)
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the effective coupling increases as Fig. 8.5 shows. Many theoretical arguments and
especially the experimental situation suggest that quarks and gluons are permanently
confined in hadrons (confinement). In contrast to asymptotic freedom, confinement
has so far not been deduced from the underlying equations of QCD (based on the
Lagrangian (8.2)). This also has to do with the problem that perturbation theory is
not applicable for large coupling strength.
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9StandardModel of Fundamental
Interactions

Particle physicists have often come out with very imaginative linguistic creations.
Asymptotic freedom and infrared slavery are good examples but also leptons and
hadrons for matter particles. Gell-Mann was inspired by Joyce’s novel “Finnegans
Wake” for the naming of quarks and he is also credited for the name quantum chro-
modynamics. On the other hand, particle physicists have completely failed in finding
a proper name for the theory of fundamental interactions that in principle describes
all nongravitational physical phenomena from 10−19 m (resolution of the LHC) to
at least 1011 m (distance earth-sun). The theory consisting of the electroweak gauge
theory and the gauge theory of the strong interactions carries the fanciless name
“StandardModel”.Nobody in his rightmindwould nowadays talk about theMaxwell
model of electrodynamics or Einstein’s relativity model. But the comprehensive the-
ory that agrees with all experimental findings over at least 30 (!) orders of magnitude
in distance1 is known by the mundane name StandardModel. The name goes back to
the early 1970s when several competing models for the unification of the weak and
electromagnetic interactions were on the market. As experiments more and more
favoured one of those models, which was originally called Weinberg model, then
Salam-Weinbergmodel and finally Glashow-Salam-Weinberg model, the theory was
for simplicity called Standard Model. Even after QCD, which is as little model-like
as QED, had passed all experimental tests with flying colours, the unimaginative
name StandardModel (now of all fundamental interactions except gravity) was kept.
Some particle physicists, especially among the older generation, prefer “Standard
Theory” to “Standard Model”, but also this name is not really a flash of genius and

1In the first instance, this applies to the luminous matter in the universe. Astrophysical analyses
suggest the existence of “dark matter”, which could require an extension of the Standard Model
(Chaps. 10, 11).
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has not been generally accepted. Thus, for lack of a better alternative, we also remain
grudgingly with the Standard Model of the fundamental interactions in this book.

On theWay to the StandardModel

As discussed in the previous two chapters, all interactions relevant in the microcosm
are described by non-abelian gauge theories (Yang-Mills theories). The strong in-
teractions are mediated by eight gluons corresponding to the gauge group SU (3).
For the electroweak interactions at least three gauge bosons must be taken into ac-
count: W+, W− for the weak interaction and the photon for the electromagnetic
interaction. The theoretician will then ask himself which non-abelian gauge groups
are compatible with these three gauge bosons. The answer is unique, only the group
SU (2) satisfies all conditions. Rather exceptionally, nature does not content itself
with the mathematically simplest possibility in this case but it insists on an additional
(neutral) gauge boson for the electroweak interactions, the Z boson. But also for four
gauge bosons there is only one (non-abelian) gauge group. Thus, the electroweak
interactions are described by a gauge theory with the gauge group SU (2) ×U (1).

The scientific papers of the subsequent Nobel Laureates Sheldon Glashow, Abdus
Salam and Steven Weinberg (Glashow 1961; Salam 1968; Weinberg 1967), who all
used the gauge group SU (2) ×U (1), received little attention originally. In addition
to purely theoretical questions like spontaneous symmetry breaking (Chap.7) or
renormalisability of the theory (Chap.6), also an experimental aspectwas responsible
for this initial disregard. All known phenomena of the weak interactions like β decay
were compatible with the existence of charged gauge bosons W± (Chap.7). On the
other hand, there were no experimental indications for the exchange of (neutral) Z
bosons. In the physics jargon this circumstance was known as the absence of neutral
weak currents, in contrast to the charged weak currents already known from Fermi
theory that are induced by the exchange of charged W bosons according to modern
view. The situation changed once neutrino beams became available at the beginning
of the 1970s. In 1973 at CERN, both the inelastic neutrino-nucleon scattering νμ +
N → νμ + X (Hasert et al. 1973b) (X stands for an arbitrary hadronic final state
with the same charge as the initial nucleon N ) and the elastic neutrino-electron
scattering νμ + e− → νμ + e− (Hasert et al. 1973a) were detected. In the Standard
Model, the latter purely leptonic process is represented by the Z -exchange diagram
in Fig. 9.1 to lowest order in perturbation theory. With the discovery of neutral weak
currents the acceptance of an electroweak gauge theory increased tremendously and
the Glashow-Salam-Weinberg model became the Standard Model.

Overall, theStandardModel of the fundamental interactions is aYang-Mills theory
with the gauge group SU (3) × SU (2)L × U (1) where SU (3) stands for QCD and
SU (2)L × U (1) for the electroweak interactions. The index L reminds us that the
weak interactions distinguish between left and right (parity violation,Chap.7).Group
theoretically, the group SU (2)L is identical with SU (2), which describes spin and
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Fig. 9.1 Z -exchange
diagram for elastic
neutrino-electron scattering
in Born approximation

νµ νµ

e− e−

Z

also Heisenberg’s isospin. For that reason, SU (2)L is sometimes called the group of
weak isospin.

Until the beginning of the 1970s, all known hadrons (particles and resonances sub-
ject to the strong interaction) could be explained as bound states of only three quarks
(u, d, s; Chap.8). On the other hand, there were already four leptons: e, νe, μ, νμ.
For esthetic reasons, James Bjorken and Sheldon Glashow already suggested in 1964
that there should also be a fourth quark (Bjorken and Glashow 1964). A more sub-
stantial argument was put forward by Sheldon Glashow, Jean Iliopoulos and Luciano
Maiani (Glashow et al. 1970). With the three known quarks, some experimentally
observed selection rules for weak decays of kaons could not be explained. For the
purpose of illustration, we consider two simple leptonic kaon decays. The charged
kaon K+ decays predominantly – with more than 60% probability – into a muon
and the associated neutrino: K+ → μ+νμ. On the other hand, the similar decay of
the neutral kaon, K 0

L → μ+μ−, is severely suppressed. A comparison between the
two partial decay rates yields

�(K 0
L → μ+μ−)

�(K+ → μ+νμ)
� 3 · 10−9 . (9.1)

The suppression of the K 0
L decay is an especially marked example for the general

observation that neutral weak currents with a change of strangeness are strongly sup-
pressed. Actually, in kaon decays the strangeness changes (almost) always. For our
two leptonic decays this also is the case because kaons are “strange” mesons, which
decay here into purely leptonic final states (μ+μ− and μ+νμ, resp.). But leptons have
no strangeness – in the quark model the quantum number strangeness is associated
with the s quark. The K+ decay is a normal weak process induced by charged weak
currents, but the K 0

L decay cannot occur at lowest order of perturbation theory be-
cause there are no neutral weak currents with change of strangeness (more generally,
with change of quark flavour) in the Standard Model. Glashow, Iliopoulos and Ma-
iani recognized that for such a selection rule (GIM mechanism) of weak decays a
fourth quark is needed, now known as charm quark c. The discovery of a bound state
c c of a charm quark and its antiparticle (Aubert et al. 1974; Augustin et al. 1974;
Nobel Prize 1976 for Burton Richter and Samuel Ting) gave the Standard Model an
additional boost. The GIM mechanism suppresses only neutral weak currents with
a change of flavour because otherwise neutral weak currents (with conservation of
flavour) could not have been detected at CERN in 1973.
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Generation Structure of Matter Particles

With the discovery of the charm quark a generation structure of the fundamental
fermions began to emerge. The first generation comprises those fermions that are of
direct relevance for our environment: electrons and their neutrinos and the lightest
quarks u, d making up the nucleons and thereby the atomic nuclei. That explains the
reaction of the Nobel Laureate Isaac Rabi to the discovery of muons: “Who ordered
that?” In a way, this question concerns the whole second generation: muons and their
neutrinos and the quarks c and s.

For the theoretician it is especially important that both generations are complete in
the following sense. So far, we have tacitly assumed that the symmetries of the field
equations that can be read off most easily from the corresponding Lagrangian are not
affected by quantum effects. So-called “anomalous” symmetries, which aremodified
by quantum effects, are relatively rare and they can actually have experimental conse-
quences for global symmetries. But for gauge symmetries such anomalies would be
fatal. It turns out that a consistent quantisation and renormalisation is only possible
for anomaly-free gauge theories. In the framework of the Standard Model a gauge
anomaly in principle only can occur where the interaction distinguishes between left
and right, i.e. in the electroweak sector with both vector and axial-vector couplings.
QCD is therefore not affected, it is a vectorial gauge theory and thus anomaly-free.
For the electroweak gauge theory this is not the case automatically. The conditions
for the absence of anomalies in this case are conditions for the quantum numbers
of the fermions in the theory. In the case of the gauge group SU (2)L × U (1) those
conditions are reduced to a single one (Bouchiat et al. 1972; Gross and Jackiw
1972): the sum of all fermion charges must vanish where only those (left-handed)
fermions are counted2 that are in doublets of SU (2)L . Let us then consider the parti-
cles in the first generation. The sum of the doublet charges in the quark sector gives
Q = 2

3e − 1
3e = 1

3e because the u quark has charge 2
3e and the d quark − 1

3e. With
quarks alone we would therefore be in trouble. From the leptons in the first genera-
tion only the electron is relevant for counting because the neutrinos are electrically
neutral. Thus the lepton sector contributes a charge Q = −e and the sum of the
lepton and quark charges still does not vanish. But we have forgotten to take into
account that every quark comes in three colours, which have of course all the same
electric charge. Hence the final counting is

Qtotal = Qquarks + Qleptons = 3 · e
3

− e = 0 , (9.2)

and the Standard Model with complete fermion generations is indeed anomaly-free.
Before we start pondering too much where nature has its knowledge about the

quantisation of gauge theories from, let us reiterate the bare facts. That each gen-
eration contains the same number of quarks (namely two) already follows from the

2CPT invariance of the theory requires that with each particle also its antiparticle is represented in
the theory. Therefore, the sum of all fermion charges vanishes in any quantum field theory.
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GIMmechanism, which however does not lead to any relation between the quark and
lepton sectors. Such a relation is implied by the condition for the absence of gauge
anomalies, which in addition requires the existence of three colours.Why the number
of quark colours is correlated with the electrical charges of the quarks, is another
aspect that can make many a simple particle physicist dizzy. For the time being, we
leave these questions to deeper thinkers (Chap.10). In the meantime, we rejoice that
the fermions appearing in nature allow for quantisation and renormalisation of our
beautiful Standard Model.

The first two generations had just been completedwhen the next surprise followed.
In 1975, another charged lepton was discovered at the e+e− collider SPEAR at the
S(tanford)L(inear)A(ccelerator)C(enter) (Perl et al. 1975). Martin Perl, the leader
of the experiment, received the Nobel Prize of 1995 for the discovery of the τ
lepton. This particle was beyond any doubt a further so-called sequential lepton,
i.e., except for its mass it was very similar to its siblings e and μ. With a mass of
mτ � 1777MeV/c2 it is however nearly twice as massive as a nucleon so at least
for the linguist the name “lepton” appears to be a misnomer. A little later it turned
out that there is also an associated neutrino ντ confirming the status of leptons.
There was only one serious problem with those leptons. Where were the quarks
of the third fermion generation that would reestablish the anomaly freedom of the
Standard Model?

In 1973, the Japanese particle physicists Makoto Kobayashi and Toshihide
Maskawa (Nobel Prize 2008) published an article (Kobayashi and Maskawa 1973)
where they investigated several scenarios how the experimentally establishedCP vio-
lation (Chap.4) could be implemented in an electroweak gauge theory. In the simplest
version of spontaneously broken electroweak gauge symmetry (Chap.7 and later in
this chapter), as it is realised in the Standard Model, at least six quarks are necessary
to implement CP violation. Together with the discovery of the τ lepton, this was a
strong hint that the quarks of the third generation were still awaiting detection. And
indeed, soon afterwards the bottom quark b with an electric charge −e/3 was found
at the F(ermi)N(ational)A(ccelerator)L(aboratory) (Herb et al. 1977). At this point, a
large majority of particle physicists was convinced that before long also a fermionic
partner with charge 2e/3 would be found. Actually it took almost 20 more years
before the top quark t was discovered with the “correct” charge in two experiments
at FNAL (Abachi et al. 1995; Abe et al. 1995).

There are good reasons to assume that there is no further generation of relatively
“light” fermions.We will come back to this point shortly. We collect the three known
generations of fundamental fermions in the two Tables 9.1 and 9.2. In the Standard
Model, the masses of the fundamental fermions are not calculable but must be de-
termined experimentally. At this time, the theory has no explanation to offer for
the wide spectrum of quark and lepton masses. Leaving aside the neutrino masses
(Chap.10), the spectrum of fundamental fermions covers the range from 0.5MeV
(electron) to 170GeV (top quark), corresponding to a difference of more than five
orders of magnitude. All these masses are generated by the B(rout)E(nglert)H(iggs)
mechanism (Chap.7), but the specific values of the masses are free parameters in the
Standard Model.
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Table 9.1 Three generations of leptons (without antileptons). The bounds for neutrino masses
are from particle decays. Much stronger bounds from the cosmic background radiation and from
neutrino oscillations (Chap. 10) can be found in the Review of Particle Properties (Tanabashi et al.
2018)

Particle Spin (�) Charge (Q/e) Mass · c2 (MeV)

e− 1/2 −1 0.5109989461(31)

νe 1/2 0 <2 · 10−6

μ− 1/2 −1 105.6583745(24)

νμ 1/2 0 <0.19

τ− 1/2 −1 1776.86(12)

ντ 1/2 0 <18.2

Of the gauge bosons, the photon and the gluons are massless, only the W and Z
bosons have nonvanishing masses. One could be tempted to expect that in analogy to
the fermion masses also MW and MZ are free parameters of the theory. But in fact,
the Standard Model makes very precise predictions for these masses. In 1983, those
predictions were beautifully confirmed by two experiments at CERN (UA1, Arnison
et al. 1983; UA2, Banner et al. 1983; UA2, Bagnaia et al. 1983). The present values
are (Tanabashi et al. 2018)

MW = (80.379 ± 0.012)GeV/c2

MZ = (91.1876 ± 0.0021)GeV/c2 . (9.3)

The experimental confirmation of the theoretical predictions is one of the greatest
successes of modern particle physics (Nobel Prize 1984 for Carlo Rubbia and Simon
van der Meer). Why was it possible for the weak gauge bosons what is not possible
for quarks and leptons? The keyword is gauge invariance. Both in QED and in
QCD gauge invariance requires massless gauge bosons (photon, gluons). Although
the electroweak gauge invariance is broken by the BEH mechanism, this symmetry
breaking is a “soft” breaking in the terminology of quantumfield theory.As explained
in Chap.7, the spontaneous symmetry breaking affects the ground state of the theory
(vacuum), but the parameters of the theory are still constrained by gauge invariance
as if the symmetry had not been broken at all. This is the reason why MW and MZ

are calculable not only in the Born approximation but to all orders in perturbation
theory. To date, these masses have been calculated up to and including the two-loop
level. It cannot be emphasised too often, the theoretical values agree impressively
well with the experimental results (9.3).

The gauge bosons W and Z are not only very massive but also highly unstable.
With a simple argument (Bertlmann and Pietschmann 1977), the number of light
neutrinos can be determined from a comparison between the experimentally mea-
sured and the theoretically calculated decay width of the Z boson. In the 1990s,
the total decay width of the Z boson was measured very precisely in experiments
at the L(arge)E(lectron)P(ositron) collider at CERN, the predecessor of the LHC. If
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Table 9.2 Three generations of quarks (without antiquarks). Since quarks cannot be isolated as
free particles (confinement), the listed masses depend on certain assumptions. Details can be found
in the Review of Particle Properties (Tanabashi et al. 2018)

Particle Spin (�) Charge (Q/e) Mass · c2 (MeV)

u 1/2 2/3 �2.2

d 1/2 −1/3 �4.7

c 1/2 2/3 1275(+25
−35)

s 1/2 −1/3 95(+9
−3)

t 1/2 2/3 173.0(0.4) · 103
b 1/2 −1/3 4.18(4) · 103

the partial decay widths for the different decay channels of the Z boson are added,
the sum differs from the measured total width. Within the Standard Model, this dif-
ference, also known as the “invisible” decay width, is due to the decays of the Z
boson into neutrinos and their antiparticles, Z → νν. These decays do not leave any
visible traces in the detectors. Due to the conservation of energy, such a decay can
only occur if the mass of the specific neutrino (equal to the mass of the associated
antineutrino) is smaller than MZ/2. The comparison between theory and experiment
then shows that there are exactly three “light” neutrinos (i.e. with mν < MZ/2), the
known νe, νμ and ντ . Making the natural assumption that each neutrino is accom-
panied by a charged lepton as partner, the anomaly freedom of the Standard Model
implies that there are only the three fermion generations already known (Tables 9.1,
9.2). Incidentally, this experimental evidence for three light neutrinos also agrees
with indications from astrophysics and cosmology.

Higgs Sector of the StandardModel

Towards the end of the last century, the structure and the ingredients of the Standard
Model were by and large known. However, an experimental confirmation of the
mechanism of spontaneous breaking of the electroweak gauge symmetry was still
missing. This mechanism must provide the three degrees of freedom that make three
massive vector bosons W+, W−, Z out of massless gauge bosons (Chap.7). In the
StandardModel the simplest version of the BEHmechanism seems to be realised. By
an appropriately constructed Higgs potential, a complex SU (2)L doublet of scalar
fields is forced to furnish in the ground state a constant value v � 246GeV (also
known as Fermi scale) for the vacuum expectation value of the electrically neutral
partner in this doublet. All masses in the Standard Model, for W and Z as well as
for leptons and quarks, are proportional to the Fermi scale.

A complex doublet of scalar fields has four real degrees of freedom. Three of them
are “eaten” up by the gauge bosons W±, Z to become massive. Thus, there is one
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real scalar field left and the associated particle is the (in)famous Higgs boson.3 In
addition to the Fermi scale, there is one more free parameter in the Higgs potential
and therefore the mass of the Higgs boson is not calculable in the Standard Model
just like the fermion masses. On the other hand, the couplings of the Higgs boson
to all other particles in the Standard Model, gauge bosons as well as fermions, are
fixed by the masses of those particles. In particular, it turns out that the Higgs boson
prefers to decay into the heaviest particles as long as the conservation of energy does
not prevent the decay. The hope of particle physicists that the Higgs boson could be
detected in the LEP experiments turned out to be premature. After the shutdown of
LEP in 2001, an allowed domain (with 95% probability)

114GeV/c2 < MH < 144GeV/c2 (9.4)

remained for the Higgs mass. The lower bound is a simple consequence of the fact
that LEP did not provide enough energy to produce a Higgs boson, but where does
the upper bound come from? As all other particle masses, the Higgs mass enters in
the calculation of many observable quantities. From the comparison of theoretical
predictions for those observables with results from the LEP experiments an allowed
domain for MH can be obtained, in particular the upper bound 144GeV/c2. Inciden-
tally, the allowed domain (9.4) implies that the two-body decay channels with the
heaviest particles (H → t t,W+W−, Z Z ) are all excluded because due to energy
conservation the sum of the masses in the final state must always be smaller than
MH .

The experimental clarification of the spontaneous breaking of electroweak gauge
symmetry was the main motivation for the construction of the LHC at CERN. After
a delay of one year due to a technical defect, the LHCwent into operation in Novem-
ber 2009. Following a long-time tradition at CERN, accelerator and detectors have
been working without problems ever since and actually better than expected. In the
first phase until the beginning of 2013, protons were colliding with a center-of-mass
energy of seven and then eight TeV. The first results were summarised by the partic-
ipating experimentalists as follows: “We have rediscovered the Standard Model at
the LHC.”

In contrast to LEP, the available energy at the LHC is big enough to produce a
Higgs bosonwith amass in the domain (9.4). The key questionwas thereforewhether
this needle in a haystack (compare, e.g., Fig. 4.1) could actually be found. In a joint
meeting in the CERN Auditorium on July 4, 2012, the two big LHC experiments
ATLAS and CMS presented their results for the existence of a boson in the expected

3In the popular literature the Higgs boson is sometimes referred to as the “God particle”. This
goes back to a book of Lederman and Teresi with the title “The God Particle: if the Universe is
the Answer, What is the Question?”. According to well-founded rumours, Leon Lederman had
originally proposed the title “The Goddamn Particle” to express already in the title his frustration
that the particle stubbornly eluded experimental detection. Unfortunately, the publisher insisted for
obvious reasons on the actual, less appropriate title.
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Fig. 9.2 Comparison between theory and experiment for several cross sections measured in the
ATLAS experiment at LHC; status of July 2017 with proton-proton center-of-mass energies up to
13TeV (From Tanabashi et al. 2018; with kind permission of © Particle Data Group 2018. All
Rights Reserved)

region4 (9.4). Since then it has been shown in painstakingly detailed analyses that
this boson with a mass (Tanabashi et al. 2018)

MH = (125.18 ± 0.16)GeV/c2 (9.5)

has indeed the expected properties of the Higgs boson, in particular the decay prob-
abilities into various final states. The Royal Swedish Academy of Sciences was also
quickly convinced and it bestowed the Nobel Prize for Physics of the year 2013 to
François Englert and Peter Higgs.

Except for neutrino masses (Chap.10), all parameters of the Standard Model are
now known. How well the Standard Model works also at LHC energies, can be seen
for instance from comparison between theory and experiment for some cross sections
measured at the LHC in Fig. 9.2. Are we then again in a similar situation as before
1900 that “all the important basic laws and facts of particle physics have already
been discovered”? The final two chapters will address this question.

4Unlike for most election forecasts, one can in general rely on statements of probability in particle
physics.
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10Beyond the StandardModel?

The StandardModel of fundamental interactions describes all nongravitational phys-
ical phenomena. Nevertheless, there is a general consensus among particle physicists
that the Standard Model is not the final theory of electromagnetic, weak and strong
interactions.

Massive Neutrinos

A small but important extension of the original Standard Model concerns neutrino
masses. Soon after the discovery of the electron neutrino it was clear that the mass
of the neutrino must be significantly smaller than the electron mass. Therefore, the
Standard Model as originally conceived had all neutrinos massless. Together with
the minimal Higgs sector (Chap.9), this feature was implemented in the Standard
Model by allowing only two degrees of freedom for each neutrino (V–A structure:
left-handed neutrinos, right-handed antineutrinos). In contrast, all charged matter
particles have four degrees of freedom because they are massive (Dirac equation,
Chap.3).

Our atmosphere buzzes with neutrinos. In addition to cosmic background neu-
trinos, there are two main sources: neutrinos coming from the sun and neutrinos
produced in the atmosphere through decays in cosmic rays. In spite of the enor-
mous neutrino flux from the sun (6.6 ·1014 neutrinos/m2 s), detection is difficult due
to the tiny cross sections. In an experiment in the Homestake gold mine in South
Dakota, Raymond Davis (Nobel Prize 2002) succeeded to detect solar neutrinos for
the first time. But already the first results in 1968 only yielded about one third of
the expected neutrino flux (Davis et al. 1968). After both the experiment and theo-
retical calculations of the solar neutrino flux (Standard Solar Model SSM, Bahcall
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Fig. 10.1 Super-Kamiokande neutrino experiment for atmospheric neutrinos (From http://www.
nobelprize.org; with kind permission from ©Johan Jarnestad/The Royal Swedish Academy of
Sciences. All Rights Reserved)

et al. 2005) had been substantially refined over a period of more than 25 years, it
became clear that the measured flux was indeed only about 30% of the calculated
flux. This was confirmed in 1989 by the Kamiokande experiment (Nobel Prize 2002
forMasatoshi Koshiba) bymeasuring the elastic neutrino electron scattering induced
by solar neutrinos (Hirata et al. 1989).

It was obvious that something was happening to the electron neutrinos on their
way from the sun to the earth. The most elegant and ultimately correct explanation
is due to the quantum theoretical phenomenon of neutrino oscillations. On the way
from the production to the detector, a neutrino of a certain type (flavour e, μ or τ )
turns into a superposition of all three neutrino flavours. A necessary condition for
such oscillations to occur, however, is that unlike in the original Standard Model the
neutrinos must have different masses.

The ultimate confirmation of neutrino oscillations came from two experiments
led by Takaaki Kajita and Arthur McDonald (Nobel Prize 2015). In the Super-
Kamiokande experiment (Fukuda et al. 1998) in Kamioka, Japan, muon and elec-
tron neutrinos generated in the earth atmosphere were detected in a giant water tank,
1000m below the earth’s surface (Fig. 10.1). While for the electron neutrinos it made
practically no difference whether they came directly from the atmosphere or whether
they traversed the whole earth before entering the detector from below, there was
a significant difference for muon neutrinos. The interpretation was straightforward.

http://www.nobelprize.org
http://www.nobelprize.org
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Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences
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Fig. 10.2 Sudbury Neutrino Observatory for solar neutrinos (From http://www.nobelprize.org;
with kind permission from©Johan Jarnestad/The Royal Swedish Academy of Sciences. All Rights
Reserved)

Whereas the muon neutrinos from “above” had to travel only a few kilometers to the
detector, those from “below” had a substantially longer itinerary. Thus, they had am-
ple opportunities to oscillate especially into τ neutrinos, which could not be detected
in the experiment.

The last piece of the solar neutrino puzzle came from the Sudbury Neutrino
Observatory (Fig. 10.2), an experiment inOntario, Canadawith a tank of 1000 tons of
heavywater, some 2100mbelow the earth’s surface. In that experiment, the complete
neutrino flux from the sun could be measured, both the electron neutrinos and the
muon and τ neutrinos generated by oscillations (Ahmad et al. 2002). As expected
(Homestake experiment, Davis et al. 1968), only one third of the flux consists of
electron neutrinos but the total measured neutrino flux agrees with the prediction of
the SSM.

As mentioned above, neutrino oscillations can only occur if the neutrinos are
nondegenerate, i.e., if their masses are different. Thus, the experimental verification
of neutrino oscillations implies that the Standard Model in its original form with
massless neutrinos must be modified. However, oscillation data only contain infor-
mation about differences of (the squares of) neutrino masses. Denoting the neutrinos
with definite masses as ν1, ν2, ν3, a global analysis of all oscillation experiments,

http://www.nobelprize.org
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including also reactor and accelerator experiments, yields the following up-to-date
values (Tanabashi et al. 2018):

�2
21 = |m2

2 − m2
1| = (7.53 ± 0.18) · 10−5 eV2/c4

�2
32 = |m2

3 − m2
2| =

{
(2.51 ± 0.05)
(2.56 ± 0.04)

· 10−3 eV2/c4
(normal)
(inverse)

. (10.1)

At present (September 2018), one cannot distinguish definitively between the “nor-
mal” (m3 > m2 > m1) and the “inverse” (m2 > m1 > m3) ordering of the neutrino
mass spectrum although global fits of available experimental results favour the nor-
mal ordering. This explains the two slightly different values for �2

32. In addition,
from the experimental results the so-called leptonic mixing angles that characterise
the superpositions of the flavour eigenstates νe, νμ, ντ in the mass eigenstates ν1, ν2,
ν3 can be extracted. From the results in Eq. (10.1) one deduces that at least two of the
three neutrinos are massive. Denoting the mass of the heaviest neutrino as mh and
that of the lightest neutrino as ml , the results of (10.1) give rise to the lower bounds

mh ≥ 0.051 eV/c2, ml ≥ 0 . (10.2)

Since neutrinos influence the formation of structures in the early universe, astropar-
ticle physics provides also an upper bound for the sum of neutrino masses (Ade et al.
2016): ∑

i

mi < 0.23 eV/c2 . (10.3)

Together, the results (10.1) and (10.3) give rise to the bounds1

0.051 ≤ mhc
2/eV < 0.088

0 ≤ mlc
2/eV < 0.071 . (10.4)

The great successes of neutrino physics during the last years have raised many
new questions. On the experimental side, the absolute measurement of at least one
neutrino mass is still missing. Experiments in preparation intend to measure the
electron spectrum in tritium β decay.2 The expected sensitivity of ∼0.2eV/c2 for
the neutrino mass should at least approach the currently allowed domain (10.4).
Another question still open iswhether neutrinos are their own antiparticles (Majorana
neutrinos) or not (Dirac neutrinos). On the theoretical side, there are many proposals
for extending the Standard Model to understand the mass spectrum of neutrinos and
the associated mixing angles. However, at present masses and mixing angles in the
lepton sector are as unexplained as the analogous quantities in the hadron sector
(quark masses and weak mixing angles of the Cabibbo-Kobayashi-Maskawa mixing
matrix).

1Upper bounds are given for normal ordering only; they are a little tighter for inverse ordering.
2The KATRIN experiment in Karlsruhe started data taking in May 2018.
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Extensions of the StandardModel

The Standard Model began with the successful unification of electromagnetic and
weak interactions in the framework of a gauge theory and the subsequent realisation
that also the strong interactions can be described by a gauge theory. The Standard
Model is based on the gauge group SU (3)× SU (2)L ×U (1). The product structure
of this gauge group tells the particle physicist that the Standard Model has three
independent gauge coupling constants (see also Chap.8). For evident reasons, they
are usually denoted as g1, g2, g3. Here, g1 and g2 are combinations of the elementary
charge e and of the weak coupling constant gW (Fig. 7.3); g3 = gs (Fig. 8.5) is the
coupling constant of QCD. Against the background of a common gauge structure,
the idea of a further unification of the three interactions was already envisaged in
the first half of the 1970s. In such a scheme, the Standard Model would be the “low-
energy version” of a more fundamental theory with a (in the technical sense) simple
gauge group with a single coupling constant.

Before we pursue the idea of grand unification usually abbreviated as GUT for
Grand Unified Theory, we discuss a few additional arguments suggesting an exten-
sion of the Standard Model.

• In addition to the three gauge coupling constants, the Standard Model possesses
several other free parameters. Together with the gauge couplings, the original
Standard Model with massless neutrinos has 18 free parameters,3 which are in
particular responsible for the fermion masses (quarks and leptons) and for the
weak mixing angles (CKM matrix) mentioned above. All those parameters are
not constrained by the theory and must be determined experimentally.

• With the neutrino masses the hierarchy of fermion masses becomes even more
mysterious. Using the maximal neutrino mass in Eq. (10.4), the masses of matter
particles encompass at least 12 orders of magnitude:

mtop

mν
> 2 · 1012 . (10.5)

Although it may seem to be paradoxical at first sight, grand unification at high
energies furnishes a possible explanation for the tiny neutrino masses (see below).

• In the StandardModel, spontaneous breaking of the gauge symmetry (BEHmech-
anism) is not only responsible for masses and mixing angles, but it also provides
a parametrisation of CP violation (Chap.9). This mechanism of CP violation is
compatible with all experimental results in the hadron sector.4 However, the ex-
perts agree that the mechanism is not sufficient to explain the asymmetry between
matter and antimatter in the universe.

3In the extended Standard Model with massive neutrinos, there are in total 25 free parameters with
Dirac neutrinos, 27 with Majorana neutrinos.
4The possible CP violation in the lepton sector in extensions of the Standard Model with massive
neutrinos is not yet confirmed definitively although some experimental indications have been found.
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• Astrophysical findings, especially measurements of the cosmic microwave back-
ground (CMB) and the accelerated expansion of the universe (Nobel Prize 2011
for Saul Perlmutter, Brian Schmidt and Adam Riess), suggest that only about 5%
of the energy density of the universe consists of normal matter (atoms). For the
remaining 95% (about 26% “dark matter” that neither emits nor absorbs light, and
69% “dark energy”) the Standard Model has no explanation. Most likely, gravity
is responsible for dark energy, e.g., with a nonvanishing cosmological constant in
Einstein’s equations of general relativity.

Frank Wilczek formulated a persuasive motivation for searching for an extension of
the theory (Wilczek 2016): “Since this theory is close toNature’s lastword,we should
take its remaining esthetic imperfections seriously.” In fact, some of the arguments
listed above may well belong to the category of “esthetic imperfections”.

But in addition to esthetic imperfections, discrepancies between theoretical pre-
dictions and experimental results would be even more convincing arguments for an
extension of the Standard Model. Considering the wealth of observables for which
the Standard Model makes concrete predictions, it is statistically extremely unlikely
that all those predictions agree exactly with experimental data. To assess discrepan-
cies between theory and experiment, a careful analysis of the statistical significance
is therefore mandatory.

To illustrate the problem, we consider a recent example. In December 2015, the
two big LHC experiments ATLAS and CMS announced evidence for the existence
of a new particle that decays into two photons. This particle, which for reasons soon
to become clear has no official name so that we simply call it X particle here, would
have had amass of about 750GeV/c2, about six times asmassive as the Higgs boson.
This announcement hit the scene like a bomb. Until summer 2016, more than 500
theoretical articles appeared trying to explain which role such a particle could play
in extensions of the Standard Model. Actually, in many of those papers as well as
in conferences and workshops the insufficient statistical evidence of the data was
emphasised. More concretely, this evidence is quantified by the experimentalists
in the following way. In case of the X particle, the observable quantity is (a bit
simplified) the number of measured photon pairs with an invariant mass (Chap.1)
around 750GeV/c2 minus the number of pairs predicted by the Standard Model
in the relevant mass region. The experimental result is then announced in the form
μ ± δ where μ is the statistical mean value and δ the experimental uncertainty. Now
the crucial question is how significantly the result deviates from the Standard Model
prediction that this difference between measured and predicted values should be
exactly zero. In a compactway the answer is that the experimental result deviateswith
δ/|μ| standard deviations ( δ

|μ| σ) from the null hypothesis of the Standard Model. If
we further assume that the data satisfy at least approximately a Gaussian distribution,
probability theory furnishes the probability that the actual result lies between μ−n δ
and μ+n δ. For instance, for n = 1 (one standard deviation) this probability is 68%,
while a probability of 99.9% corresponds to about n = 3.3 (3.3σ).

At the Spring Conferences of 2016, the experimenters announced a (so-called
local) significance of 3.9σ (ATLAS) and 3.4σ (CMS), respectively. Remarkably



Extensions of the Standard Model 103

Fig. 10.3 Contribution of
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polarisation of lowest order
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enough, the two experiments had independently found practically the same value for
the mass of the presumptive X particle. At the High Energy Physics Conference in
Chicago the latest results were announced on Aug. 5, 2016. Those results were based
on substantially more data than before and they were completely unambiguous: the
X particle had disappeared in the statistical noise and was officially declared dead.
Was this a big blunder for experimental particle physics?Not at all! In the experimen-
tal presentations it had always been emphasised that according to a tacit agreement
among particle physicists an official discovery requires a statistical significance5 of
at least 5σ. Of course, that agreement had also been respected before the official
announcement of the discovery of the Higgs boson in July 2012. Also the “explana-
tions” of the X particle presented in theoretical articles should not be seen as a lack
of credibility, but they document on the contrary a richness of imagination and the
enthusiasm of particle physicists. There remains a certain bewilderment about the
apparent caprioles of statistics that the deceptive fluctuations had occurred in both
experiments at practically the same mass.

Although less spectacular than the deceased X particle, there are several other
cases where a discrepancy between theory and experiment has been observed. How-
ever, in all those cases the statistical significance is smaller than 4σ. To this date
(September 2018), there is no compelling evidence for “New Physics” beyond the
Standard Model. An interesting example with significance between 3.5σ and 4σ
is the anomalous magnetic moment of the muon that was last measured in a preci-
sion experiment at the BrookhavenNational Laboratory (Chap.2). Different from the
electron case (Chap.5), with the present experimental accuracy not only electromag-
netic corrections, but also contributions from the weak and strong interactions have
to be taken into account for the anomalous magnetic moment of the muon. Whereas
the weak contributions are sufficiently well known (including two-loop corrections),
this is not the case for the strong interactions because not all corrections can be

5If this condition of significance would hold for opinion polls, most institutes in the business would
have to close down.
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captured in perturbation theory. In particular, this is true for the contribution of
hadronic vacuum polarisation of lowest order depicted in Fig. 10.3. This hadronic
correction is dominated by contributions at low energies where QCD perturbation
theory is not applicable because of confinement. However, this contribution can be
related to the cross section σ(e+e− → hadrons) and calculated with the help of
experimental data. Even more difficult to calculate, albeit a bit less significant nu-
merically at the present level of experimental accuracy, is the so-called hadronic
light-by-light scattering. Therefore, intensive attempts are under way to improve the
accuracy substantially, both theoretically (dispersion relations, lattice gauge theory)
and experimentally. In particular, two new experiments (at Fermilab and at J-PARC
in Japan) hope to improve the experimental accuracy by a factor of four. First results
are to be expected soon, especially from the Fermilab experiment, which has already
started operating.

Grand Unification

Because at this time there are no compelling reasons for amajor extension of the Stan-
dard Model we return to its “esthetic imperfections”. Since the discovery of asymp-
totic freedom in QCD (Chap.8) the actual values of coupling constants are known to
depend on the energy at which they aremeasured (see Fig. 8.5). For sufficiently small
coupling constants this energy dependence can be calculated in perturbation theory.
All those particles (fields) that are affected by the interaction(s) in question andwhose
mass (×c2) is smaller than the energy under considerationmust be considered in such
a calculation. If the experimental values of the coupling constants at some energy are
known, e.g., at E ∼ 100GeV, their energy dependence is calculable for all higher
energies as long as no new particles with larger masses enter the game – and, of
course, as long as no new interactions intervene. In Fig. 10.4 the energy dependence
of the three gauge coupling constants g1, g2, g3 is shown. More precisely, the inverse
quantities α−1

i are displayed where αi = g2i /(4π � c) (i = 1, 2, 3) are generalised
fine-structure constants. The gauge couplings g2 and g3 for the non-abelian groups
SU (2) and SU (3) decrease with increasing energy whereas the coupling g1 of the
abelian group U (1) increases.

Looking first at the left plot in Fig. 10.4, we observe that the three coupling con-
stants approach each other at energies 1014 to 1016 GeV even if there does not seem
to be a common point of intersection. The first reaction of an unbiased observer is
that there may well be a realistic basis for the presumed grand unification of the three
fundamental interactions. This first impression is corroborated by recalling that the
calculation for the left plot assumes that nothing new happens between 100GeV and
1016 GeV, i.e., that there are no new interactions and no heavy matter particles in
this enormous energy range. This scenario of the “great desert” has absolutely no
theoretical basis, it just expresses our ignorance about physics at smaller distances.
Thus, there are various approaches how one could cause the three gauge couplings
to meet at the same point.
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Q/GeV are displayed on the x-axis. For instance, the value 15 stands for an energy 1015 GeV. Left
plot: Standard Model with “great desert”. Right plot: MSSM with SUSY particles with masses of
the order TeV/c2 (From Tanabashi et al. 2018; with kind permission of © Particle Data Group 2018.
All Rights Reserved)

The by far most popular attempt to make the desert bloom carries the name
MSSM (Minimal Supersymmetric Standard Model). Supersymmetry is an unusual
symmetry that relates bosons and fermions. In particular, supersymmetry (SUSY)
requires that bosons and fermions are degenerate, i.e., for each boson there is a
fermion with the same mass and vice versa. Such degenerate pairs do not exist in
the known particle spectrum and thus SUSY would have to be a strongly broken
symmetry. Since the first construction of a SUSY quantum field theory in the first
half of the 1970s, the search for SUSYpartners of the known gauge bosons andmatter
particles has started anew with each new accelerator. Until today (September 2018),
also the LHC has not found any SUSY particles with masses smaller than about one
TeV/c2. Slowly but steadily, this puts the MSSM in difficulty as an explanation of
grand unification because the SUSY particles must not be much more massive than
one TeV/c2 to make the three gauge couplings meet at about 1016 GeV (right plot in
Fig. 10.4). The true SUSY aficionados are not really discouraged by this argument,
nor by the petty objection that the StandardModel has about 20 free parameters,while
theMSSM has more than 100. After all, it took 48 years from the BEHmechanism to
the discovery of the Higgs boson whereas “only” 44 years have passed (Ellis 2015)
since the first SUSY quantum field theory (Wess and Zumino 1974).

But quite independently of how the desert can bemade to bloom, grand unification
remains a fascinating idea. The most attractive version of a GUT is a gauge theory
based on the gauge group SO(10) that contains the group SU (3) × SU (2)L ×U (1)
of the Standard Model as a subgroup. In the Standard Model the matter particles of
one generation are organised in different multiplets: SU (3) triplets and singlets and
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altogether five (or even six including right-handed neutrinos to account for neutrino
masses) independent doublets and singlets of SU (2)L . The GUT group SO(10)
puts all those fermions of one generation into a single (irreducible) 16-dimensional
representation. This implies in particular that, while it is a possibility in the Standard
Model, a right-handed neutrino field is a necessity in an SO(10) GUT allowing
for massive neutrinos. But grand unification with a simple group like SO(10) has
still other attractive features. Whereas in the Standard Model the electric charges of
particles are largely arbitrary,6 the relative charges in a GUT are fixed by the group
structure. In other words, if we define for instance the charge of the electron to be
−1 (in units of e) in the usual convention, the charges of all other matter particles
are fixed including the peculiar quark charges. But in addition the 16-dimensional
representation for the matter particles also requires exactly three colours for each
quark flavour. Finally, the group SO(10) even answers the question raised in Chap.9
how nature knows that a gauge theory must not have any (gauge) anomalies for a
consistent quantisation and renormalisation. The group SO(10) belongs to the class
of anomaly-free groups and with the particle content of the 16-dimensional fermion
representation also the Standard Model is guaranteed to be free of anomalies.

Grandunification and an SO(10)GUT inparticularwould certainly entail a deeper
understanding of the structure of the microcosm. But can it also be experimentally
verified? After all, GUTs are expected to become relevant only for energies of the
order of 1016 GeV that wewill certainly not be able to reach in the foreseeable future.
In addition to the 12 known gauge bosons (eight gluons,W+,W−, Z , γ), each GUT
contains additional gauge fields most of which can induce baryon number-violating
interactions because quarks and leptons of a fermion generation are contained in the
same multiplet. In contrast, baryon number is absolutely conserved in the Standard
Model because the 12 gauge fields of the Standard Model act separately on leptons
and quarks. Therefore, the proton is absolutely stable in the Standard Model because
there are no lighter baryons into which it could decay. In GUTs in general and in
the SO(10) gauge theory in particular, the situation is different. Since experiments
have never detected a proton decay despite intensive searches, such baryon number-
violating decays must be heavily suppressed. Just as the weak interactions are weak
at low energies because theW and Z bosons are relatively massive, the gauge bosons
of an SO(10) GUT responsible for baryon number violation must be very massive
in order to suppress the possible decays of the proton. For example, the experimental
findings (Tanabashi et al. 2018) that the (partial) lifetime for the decay p → e+π0 is
longer than 1.6·1034 years7 imply that themasses of the corresponding gauge bosons
(×c2) cannot be much smaller than the unification scale 1016 GeV. If the dedicated
experiments looking for proton decay would be able to increase their sensitivity still
a little, the idea of grand unification could soon be testable experimentally.

6The abelian group U (1) is the culprit.
7In quantum theory this statement is meaningful although only about 14 · 109 years have passed
since the Big Bang. In case of doubt, consult a quantum physicist of your choice.
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Einstein’s dream to unify gravity with electromagnetism has been superseded in
modern particle physics by the grand unification of the three fundamental interactions
of the microcosm. However, the GUT scale of about 1016 GeV is not too far away
from the Planck scale EP ∼ 1019 GeVwhere quantum gravity should come into play
(Appendix A). Of course, this relative proximity of the two scales keeps stimulating
the phantasy of physicists.

Grand unification cannot answer all questions particle physicists like to pose. Ex-
cept for the small neutrinomasses, which find a natural explanation in SO(10) gauge
theories (seesaw mechanism, Minkowski 1977), GUTs do not offer any convincing
explanation for the hierarchy of fermion masses. Also the question why there are
exactly three fermion generations remains unanswered for the time being. Butmaybe
superstring theory offers an admittedly unconventional answer to those questions.
For many years it was the declared aim of string theorists to find a unique answer in
their search for the Theory of Everything. Although even today there is no general
consensus what superstring theory really is, the hypothesis is gaining ground that
instead of a single one there could be an enormous multitude of different superstring
theories (the inconceivable number 10500 is sometimes put forward), most of which
or maybe all of which could be realised in causally disconnected regions of the
universe. In all versions of that theory the fundamental parameters like masses and
coupling constants would be different. Our part of the universe is only distinguished
in that our set of fundamental parameters allows for the existence of life and there-
fore for the existence of physicists8 who can pose such questions. But since there
may be 10500 other possibilities it would be completely pointless to try to explain
those parameters. Even among superstring disciples there are different views how
far physics is sliding into the realm of metaphysics here.
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11Outlook

In spite of the impressive confirmation of the Standard Model by LHC experi-
ments, experimental and theoretical attempts will continue to look for hints for “New
Physics” beyond the Standard Model. On the experimental side, these attempts can
be characterised by three frontiers. In Fig. 11.1 those frontiers are shown graphically:
high energies, high intensities and cosmic frontier. As also shown in the figure, the
three frontiers overlap to some extent. The big LHC experiments ATLAS and CMS
are mainly concerned with physics at the high-energy frontier. But the LHC does
not only provide very high energies but also very high intensities. Thus, the smaller
LHC experiment LHCb investigates decays of B particles (particles with at least one
b quark) and even decays of the relatively light K mesons. On the other hand, both
at the LHC and in specialised experiments of astroparticle physics searches for dark
matter will be pursued.

Energy Frontier

This is not the place for a comprehensive overview of the present status of exper-
imental high energy physics.1 Instead we are going to highlight a few prominent
developments that can be expected to shape particle physics in the next ten or more
years. The primacy of highest energies will remain in Europe for some time to come.
As already decided by the CERN Council, the luminosity of the LHC, a measure for
the intensity of the two proton beams, will be raised in two steps by a factor between
five and seven till 2026, in particular by installing new superconductingmagnets with

1An up-to-date overview can be found in the proceedings of the biannual High Energy Physics
Conferences, e.g., from the most recent conference in Seoul (http://www.ichep2018.org/).
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Cosmic Particles

Fig.11.1 Three frontiers of present-day experimental high energyphysics: energy frontier, intensity
frontier and cosmic frontier. (From Particle Physics Project Prioritization Panel (P5), U.S. Particle
Physics: Scientific Opportunities; with kind permission of © U.S. Department of Energy, Office of
Science 2008. All Rights Reserved)

a field strength of 11.5 T(esla). Until the early 2030s, this upgrade should furnish an
increase in the number of collisions and therefore also of events by a factor of 20. The
feasibility of future accelerator projects at CERN will among others depend on the
results obtained at the LHC. One such project that could start after the completion of
the LHC program around 2035 is a linear lepton collider named CLIC. The collisions
of electron and positron beams are expected to produce center-of-mass energies of
380–3000GeV in several steps. A competing e+e− project is the ILC (International
Linear Collider), probably to be realised in Japan. The initial center-of-mass energy
of 250GeV at the ILC may seem like a step back compared to the LHC energy of
13TeV but the much smaller rate of “uninteresting” events in e+e− collisions makes
up for the smaller energy. Both CLIC and ILC should enable precision measure-
ments of the Higgs boson and of the top quark, but they would also search for new
particles. Even if the absence of synchrotron radiation in a linear accelerator allows
for a relatively cost-effective operation, financing those future projects will remain
a major problem. This applies also to the ambitious Chinese project, an enlarged
version of the LEP/LHC complex. The CepC (circular electron positron collider,
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optionally also Chinese electron positron Collider) would have a circular tunnel of
100 km circumference that would in a first step house an e+e− storage ring with a
total energy of about 240GeV for precisionmeasurements of the Higgs boson (Higgs
Factory). In a possible second step, a proton proton storage ring could follow with a
total energy of 50–70TeV. According to the proponents, e+e− collisions could start
around 2030.

Intensity Frontier

This area of experimental high energy physics is characterised by high intensities
and/or high sensitivities. Neutrino experiments will continue to play an important
role here, both with extraterrestrial sources and with neutrinos from reactors and
accelerators. An especially ambitious project is the Deep Underground Neutrino
Experiment (DUNE). This experiment will use an intensive neutrino beam from
the Long-Baseline Neutrino Facility at Fermilab. With a giant underground detec-
tor at the Sanford Laboratory in the Homestake gold mine in South Dakota, some
1300 km away from Fermilab, it will also be sensitive to extraterrestrial neutrinos.
As in other big neutrino detectors,2 DUNE also will search for proton decays. Both
DUNE and the planned mega-detector Hyper-Kamiokande in Japan with one mil-
lion tons of water are expected to be operational around 2026. The successful B
factories in the U.S. and in Japan with the experiments BaBar and Belle, which
confirmed the mechanism of CP violation in the B sector of the Standard Model,
will be succeeded by the e+e− storage ring Super-KEKB in Tsukuba (Japan). This
B factory will deliver a luminosity 40 times higher than at KEKB to the successor
experiment Belle II, which started operating in April 2018 and will look in particular
for rare decays of B mesons and τ leptons. First results should be available soon.
Other high-intensity experiments will be performed with kaons, e.g., in the Japanese
facility J-PARC, where also a precision measurement of the anomalous magnetic
moment of the muon is being prepared (Chap.10). Finally, several experiments will
try to measure electric dipole moments of particles (electron, neutron) and atoms
(mercury, radium, xenon) to obtain additional insight into the mechanism of CP vio-
lation. Because the Standard Model predicts in general very small electric dipole
moments, which have not been verified experimentally up to now, such experiments
are especially promising for finding traces of new physics.

Cosmic Frontier

The search for dark matter and precision measurements of the cosmic microwave
background (CMB) are in the focus of astroparticle physics.Although there are strong
indirect indications for the existence of dark matter (DM) such as the rotation curves

2For instance, Kamiokande actually stands for Kamioka n(ucleon)d(ecay)e(xperiment).
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of spiral galaxies, gravitational lensing, dynamics of galaxy clusters, etc., all attempts
of direct detection have been unsuccessful so far. At present, the second generation
of DM experiments is in preparation. Long-time candidates for DM are electrically
neutral, massive particles (WIMPs = Weakly Interacting Massive Particles), which
only feel gravitational and weak interactions. The goal is to detect their scattering
on normal matter. A promising second-generation project is the LZ experiment, a
detector with seven tons of liquid xenon that will be housed in the Sanford Laboratory
together with the DUNE experiment. In the LZ experiment, scheduled to start in
2020, the recoil of xenon nuclei after scattering with WIMPs will be measured. A
smaller experiment calledADMX is dedicated to the hypothetical axion, another DM
candidate. In this experiment at the Univ. of Washington (Seattle) axions would be
converted into photons after traversing a strong magnetic field. Also in the IceCube
Neutrino Observatory in Antarctica the search is on for neutrinos that could originate
in the annihilation of WIMPs. A strong indirect evidence for DM comes from CMB
measurements thatwill be continued after the successful satellite experimentsCOBE,
WMAP and PLANCK. The CMB data have furnished additional important results
such as the density of the mysterious dark energy, parameters of cosmic inflation and
number and masses of neutrinos (e.g., the upper bound (10.3) for the sum of neutrino
masses). Presently, already the fourth generation of ground-based CMB experiments
called CMB-S4 is in the planning stage. Telescopes in different regions of the earth
will be employed. In addition, there are several proposals for CMB experiments with
satellites that could be ready from 2025 on.

Quantum Field Theory

The history of the Standard Model is also a success story of renormalisable quantum
field theories, which have therefore enjoyed a privileged position in theoretical par-
ticle physics for a long time. Supersymmetric extensions of the Standard Model and
the many variants of grand unification are all renormalisable quantum field theories.
However, by now there are almost countless many of such variants with predic-
tions depending in general on many unknown parameters, making the comparison
between theory and experiment more difficult and less significant. Partly for that
reason, an alternative approach has gained in importance over the years, where the
general structure of extensions of the Standard Model and their phenomenologi-
cal consequences are analysed without restricting attention to a specific realisation.
Grand unification is a good example for this paradigm shift. Since it will probably
never be possible to produce particles with masses of the order 1016 GeV/c2, the
actual parameters of a GUT are less interesting than the general recognition that in
such theories baryon number can be violated leading in particular to proton decay.
To some extent, the situation is similar as at the time of the Fermi theory of the weak
interaction before the advent of the Standard Model. Between 1933 and the end of
the 1960s, the manifestations of the weak interaction were described in terms of a
nonrenormalisable theory, which in the V–A version (Chap.7) was quite successful
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although theW boson as carrier of the weak interaction had not been discovered yet.
There is however an important difference between the Fermi theory and the Standard
Model. Whereas the Fermi theory consisted of a nonrenormalisable quantum field
theory only, today we are talking about nonrenormalisable extensions of the renor-
malisable Standard Model in the framework of an effective quantum field theory
(EFT). A special application concerns the scalar sector that is responsible for the
spontaneous breaking of the gauge symmetry. Although the simplest realisation of
the BEH mechanism with a single scalar doublet (Chap. 9) agrees with all available
data, the present experimental accuracy still allows for an extended scalar sector in
the T eV range. An EFT by the name of HEFT (Higgs Effective Field Theory) is the
proper tool to investigate such extensions in a model independent way.

In a sense, EFTs are the antithesis to the Theory of Everything, the slowly fading
long-term goal of string theory. EFTs are the quantum field theoretical realisation of
the quantum ladder (Chap. 1). Massive degrees of freedom need not be represented
in the theory by explicit quantum fields in order to derive useful predictions at low
energies, i.e. at energies substantially smaller than the masses (×c2) of those very
massive particles. For instance, we do not need the still unknown theory of quantum
gravity to understand the structure of the hydrogen atom, nor is the precise structure
of the electroweak gauge theory relevant for chemistry.

EFTs should be seen as approximations of an underlying “fundamental” theory,
which in the sense of the quantum ladder could itself be an EFT of an even more
fundamental theory, etc. If the degrees of freedom are known that are relevant at the
energy under consideration, the corresponding EFT is usually treated perturbatively.
For instance, it does not makemuch sense to search for an exact solution of the Fermi
theory. Also the question of convergence of the perturbative expansion of an EFT is
not a relevant issue. The perturbative series must be seen as an asymptotic expansion
that ceases to be relevant once explicit contributions of the underlying fundamental
theory can no longer be neglected. This recognition also implies that the perturbative
expansion of the renormalisable part (here of the Standard Model) must be advanced
as much as necessary in order to avoid misinterpreting a discrepancy between theory
and experiment as evidence for “New Physics”. The domain of applicability of the
perturbative series depends most of all on how much bigger the masses (×c2) in
the fundamental theory are than the typical energy scale of the EFT. The great
successes of the Standard Model even at LHC energies indicate that in spite of the
two-loop approximation (and beyond) of the perturbative series and despite precise
experiments we are still not sensitive to the eventual “New Physics”. This somewhat
sober interpretation of the present situation of particle physics in an EFT setting in
no way diminishes the special status of the Standard Model.

As amatter of fact, EFTs appear inmany areas of physics, though not always under
this label. The effective nature of the theoretical treatment is obvious both in atomic
physics and in the physics of condensed matter. But also in particle physics there
are interesting applications in addition to the analysis of extensions of the Standard
Model. Here, only two such applications will be mentioned, both of which refer to
the strong interactions. At energies <1GeV, QCD cannot be treated perturbatively
because of confinement. The physics of pions and kaons, but also of nucleons at
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low energies is therefore investigated with an EFT called chiral perturbation the-
ory (Weinberg, Gasser, Leutwyler), where instead of quarks and gluons mesons and
baryons are the relevant quantum fields. In general, the symmetries of the underlying
fundamental theory are of vital importance for the construction of an EFT, in the con-
crete case the approximate so-called chiral symmetry of QCD. Chiral perturbation
theory has put the physics of hadrons at low energies on a solid basis although it is
actually a nonrenormalisable quantum field theory. As strange as it may sound, theo-
rists therefore had to learn how to properly renormalise nonrenormalisable quantum
field theories. The often uncontrolled assumptions of the “old” hadronic physics have
been replaced in this way by a systematic quantum field theoretical approach.

At LHC energies, the StandardModel can be treated perturbatively. Nevertheless,
EFTs play an important role also at those energies. Here the issue is not to replace
quarks and gluons by hadron fields. Instead, a major question is how to interpret a
multi-particle event as in Fig. 11.2. How can one find indications for physics beyond
the StandardModel in such an event?After all, the tracks in the detector reconstructed
in Fig. 11.2 do not represent quarks and gluons but charged hadrons and leptons.
It is not too surprising that we do not get very far with the standard perturbative
approach, not least because of the huge number of particle tracks. Energetic quarks
and gluons manifest themselves in the final state of a scattering process as conical
hadron bundles called jets whose total momentum points in the direction of the
original quark or gluon. No matter how large the energy of the original particle is,
in the end this energy spreads over many hadrons with very different energies. This
process of hadronisation is therefore a process with very different energy scales that
calls for a treatment with EFT methods. The analysis of hadronic jets is an integral
part of the interpretation of scattering processes at the LHC.

Fig. 11.2 2-jet event at the LHC with 13TeV center-of-mass energy (With kind permission of
© CERN 2016 for the benefit of the CMS Collaboration. All Rights Reserved)
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Some 52 years ago when the author of this book started working on his thesis,
the Standard Model was in a way just around the corner and yet it practically played
no role in the research landscape of the time. As discussed in earlier chapters, the
status of particle physics around 1965 was far from satisfactory. Only ten years later,
the Standard Model, one of the great achievements of the human mind, was in full
bloom. It has been dominating fundamental physics ever since without interruptions.

It took almost 50 years from the birth of quantum mechanics to the establishment
of the Standard Model as known today. This period has brought forth fundamental
new insights into the structure of matter and its interactions. From atomic physics
with a characteristic resolution of about 10−10 m we attained distances of approxi-
mately 10−17 m in 1970 thanks to the progress of accelerators and of experimental
particle physics. Since then, about the same period of time has passed leading to a
resolution of at least 10−19 m. The comparatively small improvement in resolution
by only two orders of magnitude has of course to do with the fact that experimental
progress becomes more and more difficult and expensive. That except for the experi-
mental confirmation of the Higgs boson no really fundamental discoveries have been
made in recent years has given rise to certain frustrations among particle physicists.
In my view, there is no reason to be frustrated. On the one hand, both current and
planned activities in experimental particle physics show that the efforts to find hints
for “NewPhysics” have not diminished. On the other hand, the ongoing experimental
confirmations of the Standard Model document that with this theory of the funda-
mental interactions we have reached a level never known before. Although there
is no reason for complacency or even vanity, deep satisfaction about the progress
achieved is certainly appropriate.



AMathematical Structures,Units and
Notation

In classical mechanics one investigates the motion of (point-)particles under the in-
fluence of certain forces. Newton’s second axiom has the form of an equation of
motion to determine the time dependence q(t) of the coordinates of the respective
particles. Here, q(t) stands for all coordinates. For a single particle three coordinates
are needed (e.g., the Cartesian coordinates x, y, z), for N particles 3N coordinates.
Since we are interested in the temporal development of the coordinates, the New-
tonian equation of motion has the form of a differential equation. Thus we have to
introduce the derivative of a function. The relevant quantities are well known from
everyday life. The velocity v(t) is the first derivative of the coordinate q(t), the
acceleration a(t) the second derivative1:

v(t) = dq(t)

dt
, a(t) = dv(t)

dt
= d2q(t)

dt2
. (A.1)

The revolutionary step of Galilei and Newton was to realise that the acceleration
is proportional to the applied force. Hence, the Newtonian equation of motion is a
differential equation of second order (m is the mass of the particle, K the force acting
on the particle):

m
d2q(t)

dt2
= K (q(t), v(t)) . (A.2)

If your eyelids are beginning to droop here, you should now wake up again. One
important manifestation of the unity of physics is that also the basic equations of
the fundamental interactions (gravity, electromagnetism, strong and weak nuclear
forces) are all differential equations of second order. However, we have to introduce
a small generalisation. Already in classical physics, for instance in hydrodynamics
and especially in electrodynamics, the quantities of interest are both time and space

1The exact definition of a derivative can be found in any mathematics textbook for the upper
secondary level.
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Table A.1 Relations between real-valued quantities a, b

Relation Interpretation

a < (>) b a smaller (bigger) than b

a � (�) b a much smaller (bigger) than b

a � b a approximately equal to b

a ∼< (∼>) b a approximately equal to or smaller (bigger) than b

a �= b a not equal to b

dependent and are denoted as fields. The electric field �E(t, �r) and the magnetic field
�B(t, �r) are the best-known examples. In these cases, we speak of field equations
instead of equations of motion. Since there are now more than just one independent
variable (time t and three space coordinates �r ), we have to distinguish between
different derivatives. For this purpose one defines partial derivatives as they for
instance occur in the Schrödinger equation (3.24):

∂ψ(t, �r)
∂t

,
∂2ψ(t, �r)

∂x2
,

∂2ψ(t, �r)
∂y2

,
∂2ψ(t, �r)

∂z2
. (A.3)

Here, ∂ψ(t, �r)/∂t indicates that the field ψ(t, �r) is differentiated with respect to
the time t , keeping the spatial coordinates �r fixed. All equations of the fundamental
interactions are partial differential equations of second order for the respective fields.

The trigonometric functions sine and cosine are assumed to be known. In Euler’s
formula

eix = cos x + i sin x (A.4)

they appear as real and imaginary parts of an exponential function. The derivative of
the exponential function deix/dx = iei x implies the derivatives of the trigonometric
functions (d sin x/dx = cos x , d cos x/dx = − sin x) and vice versa. Similarly, for
the partial derivative of an exponential function of the type eax+b, where a and b are
independent of the variable x , we have ∂eax+b/∂x = aeax+b. For relations between
real-valued quantities in this book we use the usual symbols collected in Table A.1.

For the description of physical quantities we need a system of units. In almost all
industrialised nations the SI system (Système internationale d’unités) must be used
for both official and commercial use. The SI system has seven basic units of which
we do not need mole and candela. Another one (ampere) we will express in terms of
the other basic units. The remaining four basic units are then second, meter, kilogram
and kelvin defined as follows.

i. The second (s) is defined as 9192631770 times the period of the transition be-
tween the two hyperfine levels of the ground state of atoms of the cesium isotope
133Cs. The period of the transition is the inverse of the transition frequency ν.

https://doi.org/10.1007/978-3-030-14479-1_3
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ii. Themeter (m) is defined as the distance traveled by light during 1/299792458 of
a second in vacuum. Since this definition replaced the original prototype meter,
the value of the velocity of light is exact by definition: c = 299792458 m/s.

iii. The kilogram (kg) is the mass of the international kilogram prototype kept in
Sèvres near Paris. This definition is currently being replaced by another one that
will use Planck’s constant �. Similar to the velocity of light, also � will then
have an exact value.

iv. The kelvin (K) as unit of the absolute temperature will only be used in the radi-
ation laws in Chap.2. Here we content ourselves with an approximate definition
that T = 0 K corresponds to the more common temperature −273.15 ◦C (ab-
solute zero) and that temperature differences measured in K and degree Celsius
are identical.

The ampere is the unit of electric current in the SI system. This definition may
have itsmerits for technical applications, but for fundamental physics it is completely
unsuitable. For instance, generations of physics students have racked their brains over
themysterious permittivity of the vacuum ε0.Whoever has tried to formulate Lorentz
transformations for electric and magnetic fields in the SI systemwill understand why
most theoreticians and practically all particle physicists follow the suggestion of the
great Carl Friedrich Gauß to express the electric charge (in the SI system defined by
coulomb = ampere-second) in terms of meter, kilogram and second. In the Heaviside
system of particle physics, the elementary charge e can most easily be defined in
terms of the fine-structure constant α. As a dimensionless quantity, the fine-structure
constant has the same value in all systems of units2:

α = 1/137.035999139(31) . (A.5)

Here we have used a practical notation especially for quantities measured very pre-
cisely where instead of the explicit notation

α−1 = 137.035999139 ± 0.000000031 (A.6)

one writes the experimental error in brackets as in Eq. (A.5). In the Heaviside system
the elementary charge e is then given by

e = √
4π�cα . (A.7)

With the current value for Planck’s constant,3

� = 1.054571800(13) · 10−34 J s , (A.8)

2Current values of many physical quantities can also be found under http://physics.nist.gov/
constants.
3Joule is the (derived) unit of energy in the SI system: J = kgm2 s−2.

https://doi.org/10.1007/978-3-030-14479-1_2
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and with the law of error propagation one could now determine the current value of
e. We leave this calculation to the gentle reader.

In quantum physics one often uses electron volt (eV) as unit of energy with
1 eV = 1.6021766208(98) · 10−19 J, and the derived quantities TeV = 103 GeV =
106 MeV = 109 keV = 1012 eV . Subsequently, nuclear and particle physicists
often express also masses in terms of electron volts and the velocity of light. For
instance, the electron mass can be written as me = 0.5109989461(31)MeV/c2,
which appeals more to the imagination of nuclear and particle physicists than the
conventional me = 9.10938356(11) · 10−31 kg.

In atomic and subatomic physics, lengths are often expressed in terms of the
following quantities: nm (nanometer), Å ( Ångström), fm (femtometer or fermi) with

1 nm = 10 Å = 10−9 m = 106 fm . (A.9)

For order-of-magnitude estimates the following relations are useful:

GeV−1 � 6.58 · 10−25
�

−1 s � 1.97 · 10−16 (�c)−1 m (A.10)

1 fm = 10−15 m � �c

0.2GeV
� 3.34 · 10−24 c s . (A.11)

For instance, these relations tell us that light needs about 10−24 s to traverse the
diameter of a proton (approximately 1 fm). They also imply that an accelerator with
energies in the GeV region can resolve distances of about 10−16 m. Because the
LHC works in the TeV region, particle physics presently enters dimensions smaller
than 10−19 m.

In phenomenologically oriented particle physics, gravity does not play any role at
presently available energies. This can be corroboratedwith the following dimensional
arguments. The strength of gravitational attraction is given by Newton’s constant

GN = 6.67408(31) · 10−11 m3 kg−1 s−2 . (A.12)

Except for numerical factors, a unique energy can be constructed from the quantities
GN, �, c known as Planck energy:

EP =
√

�c5/GN � 1.22 · 1019 GeV . (A.13)

The corresponding length

lP =
√
GN�/c3 � 1.62 · 10−35 m (A.14)

is known as the Planck length. In our four-dimensional world (one time and three
space dimensions), we therefore expect that quantum effects of the still unknown
theory of quantum gravity will become relevant only at energies ∼>1019 GeV or at
distances ∼<10−35 m. In the foreseeable future, experimental particle physics will
stay very far away from these key figures.
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B.1 GaugeTransformations

Maxwell’s equations of classical electrodynamics are a system of partial differential
equations for the electric field �E(t, �r) and the magnetic field �B(t, �r), depending on
the charge density ρ(t, �r) and on the current density �j(t, �r). In the Heaviside system
of particle physics (Appendix A), the equations have the following form:

rot �E + 1

c

∂ �B
∂t

= 0 div �B = 0 (B.1a)

div �E = ρ rot �B − 1

c

∂ �E
∂t

= 1

c
�j (B.1b)

In cartesian coordinates, the differential operators divergence and curl acting on
an arbitrary (differentiable) three-dimensional vector field �V (t, �r) with components
(V1, V2, V3) are defined as follows:

div �V = ∂V1
∂x

+ ∂V2
∂y

+ ∂V3
∂z

(B.2)

rot �V =
(

∂V3
∂y

− ∂V2
∂z

,
∂V1
∂z

− ∂V3
∂x

,
∂V2
∂x

− ∂V1
∂y

)
. (B.3)

The divergence of a vector field is a one-component scalar field, while the curl
produces another vector field. Finally, we also need the gradient that turns a scalar
field 	(t, �r) into a vector field:

grad 	 =
(

∂	

∂x
,
∂	

∂y
,
∂	

∂z

)
. (B.4)
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Let us consider first the two field equations in (B.1a), the homogeneous Maxwell
equations. Since the divergence of a curl vanishes, there exists a vector field �A(t, �r)
for every (reasonable) magnetic field �B(t, �r) with

�B(t, �r) = rot �A(t, �r) (B.5)

so that the Maxwell equation div �B = 0 is automatically fulfilled. If we now insert
�B = rot �A into the second homogeneous Maxwell equation, we get

rot

(
�E + 1

c

∂ �A
∂t

)
= 0 . (B.6)

The curl of a gradient always vanishes. Thus, under the usual conditions there exists
a scalar field that with foresight we call A0(t, �r) so that

�E(t, �r) = −grad A0(t, �r) − 1

c

∂ �A(t, �r)
∂t

. (B.7)

A0(t, �r) is called the scalar potential and �A(t, �r) the vector potential of electrody-
namics.

By introducing scalar and vector potentials, we have “solved” the homogeneous
Maxwell equations (B.1a) automatically. If we now insert (B.5) and (B.7) into the
inhomogeneous Maxwell equations (B.1b), we are left with only four partial dif-
ferential equations of second order to solve for the potentials A0, �A. By means of
Eqs. (B.5) and (B.7) we can then calculate the physical fields �B(t, �r) and �E(t, �r)
from the potentials.

Introducing the potentials A0, �A simplifies the solution of the Maxwell equations
in many cases but the potentials are not uniquely determined. This brings us to gauge
transformations that also play an important role in the quantum field theory of the
Standard Model. Instead of the original potentials A0, �A we define new potentials
A′
0,

�A′ with the help of an arbitrary (differentiable) function β(t, �r):

A′
0 = A0 + 1

c

∂β

∂t
, �A′ = �A − grad β . (B.8)

If we now calculate the fields �E ′, �B ′ with the new potentials A′
0,

�A′ using Eqs. (B.5)
and (B.7), we find that

�E ′(t, �r) = �E(t, �r) , �B ′(t, �r) = �B(t, �r) . (B.9)

In other words, the physical fields �E, �B remain unchanged under a gauge transfor-
mation (B.8). With an appropriate choice of the gauge function β(t, �r), solving the
Maxwell equations is often facilitated.

The classical Maxwell equations (B.1) are obviously gauge invariant because
the potentials do not even appear in the equations. In the Standard Model and in
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quantum electrodynamics in particular, the situation is different because the photon
field, the quantised version of the classical potentials (A0, �A), appears explicitly in
the QEDLagrangian (5.1) and therefore also in the field equations of QED. Using the
relativistic notation by combining the scalar and vector potentials into a four-vector
field A(x) = (A0(t, �r), �A(t, �r)) with x = (ct, �r), the gauge transformation (B.8)
can be written in the (covariant) form

A′
μ(x) = Aμ(x) + ∂μβ(x) = Aμ(x) + ∂β(x)

∂xμ
(μ = 0, 1, 2, 3) . (B.10)

This is precisely the transformation that guarantees the gauge invariance of the QED
Lagrangian (5.1). In the QED Lagrangian the transformation of the photon field is
compensated by a phase transformation of the Dirac field. The Lagrangian and the
field equations of QED are therefore gauge invariant. As discussed in Chap.5, gauge
invariance of QED guarantees that the (four-component) photon field A(x) only has
two physical degrees of freedom as it must be for a massless particle with spin >0
like the photon.

B.2 Lorentz Transformations

Einstein’s principle of relativity states that all inertial systems (IS) are equivalent. For
definiteness, consider a particle that is at rest in a given IS. In another inertial system
IS′ it then moves with a constant velocity �v. The Lorentz transformation relates the
coordinates of the particle in the original system IS with those in IS′. If we choose
our cartesian coordinate system such that the (constant) velocity �v points in the x-
direction, the following relations between the space-time coordinates (t, x, y, z) in IS
and (t ′, x ′, y′, z′) in IS′ (special Lorentz transformation with velocity �v = (v, 0, 0))
hold:

t ′ =
(
t − vx

c2

)
/

√
1 − v2/c2

x ′ = (x − vt) /

√
1 − v2/c2

y′ = y

z′ = z . (B.11)

In the limiting case |v| � c (all velocities much smaller than the speed of light), the
Lorentz transformation (B.11) turns into a Galilei transformation:

t ′ = t

x ′ = x − vt

y′ = y

z′ = z . (B.12)
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In classical mechanics that is invariant with respect to Galilei transformations there
exists a universal time (t ′ = t). In contrast, the time in special relativity depends on
the IS as can be seen in Eq. (B.11). The dependence of the time on the reference
system is the cause of almost all conceptual difficulties of special relativity (Chap.2).

The Lorentz transformation (B.11) implies the theorem on the addition of veloc-
ities in special relativity. Let a particle in IS have a velocity �w = (w, 0, 0), i.e.,
it moves in the (positive) x-direction (w > 0). Performing a Lorentz transforma-
tion with a velocity �v where �v = (−v, 0, 0) points for simplicity in the negative
x-direction (v > 0), the velocity of the particle �w′ = (w′, 0, 0) in IS′ is given by

w′ = w + v

1 + vw/c2
. (B.13)

This equation implies that for a given velocity w the velocity w′ increases mono-
tonically with increasing v, but for any v < c we also have w′ < c. The speed of
light in special relativity is a limiting velocity that can never be attained by massive
particles.

On the other hand, performing the limit c → ∞ in (B.13) we get the well-known
theorem on the addition of velocities in classical mechanics:

w′ = w + v . (B.14)

Therefore, the classical addition of velocities is only approximately valid for veloc-
ities much smaller than the speed of light.

In a field theory also the fields undergo Lorentz transformations. The simplest
case is a scalar field (Table 4.1) that transforms as

ϕ′(x ′) = ϕ(x) . (B.15)

The transformed scalar field in IS′ has the same form in the transformed space-time
coordinates as the original field in the original coordinates. For many-component
fields such as spinor and vector fields (Table 4.1), the different components transform
also among themselves. We will not need the explicit form of those field transforma-
tions but they guarantee that a Lagrangian like (5.1) is Lorentz invariant. Therefore,
QED and the StandardModel altogether satisfy Einstein’s principle of relativity, i.e.,
they have the same form in all inertial systems.
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Glossary

Action Quantity measured in units J s = kgm2 s−1. Energy × time, space coor-
dinate × momentum, angular momentum all have the dimension of an action.
In quantum theory, Planck’s constant � is the fundamental unit of the action. In
(quantum) field theory, the four-dimensional integral of the→ Lagrangian is also
called action. Not surprisingly, the action has the dimension of an action

Antimatter The CPT theorem (Chap.4) states that in relativistic quantum field
theories every particle has an associated antiparticle with the same mass and op-
posite electric charge. Electrically neutral particles may be their own antiparticles
as for instance the photon

Boson Particle or bound state with integer spin (in units of �); bosonic many-
particle states satisfy Bose–Einstein statistics (Chap.4)

Causality Cause (time tc) ⇒ effect (time te)with tc < te in nonrelativistic physics.
In special relativity time depends on the inertial system: causality amounts to the
condition that signals cannot be transmitted with superluminal velocities

Confinement Quarks and gluons are permanently confined in → hadrons. In ad-
dition to experimental evidence, many theoretical arguments support confinement
but a direct proof using only the QCD field equations is still missing

Divergence Infinities occurring in the perturbative evaluation of amplitudes (→
S-matrix elements), caused by the unknown structure of physics at smallest dis-
tances (highest energies). The→ renormalisation programof quantumfield theory
shifts this unknown structure to masses and coupling constants, which must be
determined experimentally

Electroweak theory Unified → gauge theory of electromagnetic and weak inter-
actions (Chap.7); together with → quantum chromodynamics, this theory con-
stitutes the Standard Model of fundamental interactions

Exclusion principle Consequence of the spin-statistics theorem (Chap.4) of rel-
ativistic quantum field theories: two identical → fermions cannot be in the same
quantum → state. Originally postulated for electrons by Pauli to understand
atomic structure
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Fermion Particle or bound state with half-integer spin (in units of �); fermionic
many-particle states satisfy Fermi–Dirac statistics (Chap.4)

Gauge group Set of local → symmetry transformations
Gauge invariance → AppendixB
Gauge theory (Quantum) field theory that is invariant with respect to local sym-

metry transformations (→ gauge group). Gauge invariance (AppendixB) of a
relativistic quantum field theory requires the existence of gauge bosons with →
spin 1, in the Standard Model photon, gluons, W and Z bosons

Hadron Hadrons are particles or bound states affected by the strong interactions.
One distinguishes between mesons (integer spin) and baryons (half-integer spin).
All hadrons are bound states of quarks and gluons (Chaps. 8, 9)

Interaction The nonrelativistic concept of force is replaced in the relativistic do-
main by the more comprehensive concept of interaction. According to modern
physics, all physical phenomena can be related to exactly four fundamental inter-
actions: gravitation, electromagnetism and the strong and weak nuclear interac-
tions

Lagrangian Generalisation of the Lagrange function of classical mechanics in
field theory. Compact representation of a (quantum) field theory from which the
field equations can be derived

Lepton Leptons are particles that are not affected by the strong interactions. There
are three types of charged leptons and their associated neutrinos: electron, muon,
tau lepton (Chap.9)

Lorentz invariance → AppendixB
Perturbation theory Expansion of an amplitude (→ S-matrix element) in quan-

tum field theory in powers of one or several coupling constants, e.g., in powers
of the fine-structure constant α in QED

Quantum chromodynamics (QCD) Quantum field theory of the strong interac-
tions (strong nuclear force, Chap.8), → gauge theory with eight gluons as gauge
bosons

Quantum electrodynamics (QED) Quantum field theory of the electromagnetic
interaction (Chap.5), → gauge theory with the photon as gauge boson

Renormalisation Parameters of a quantum field theory (masses, coupling con-
stants) must be related to measurable quantities; those relations are in general
modified (renormalised) by the interaction(s). Renormalisation removes the →
divergences of S-matrix elements occurring in → perturbation theory (Chap.6).
Renormalisable quantum field theories give rise to well-defined predictions at
each order in perturbation theory

S-matrix Unitary (infinite-dimensional) matrix; matrix elements are the probabil-
ity amplitudes for the transitions from given initial states (t → −∞) to specified
final states (t → ∞). Absolute squares of S-matrix elements determine measur-
able quantities like cross sections and decay probabilities

Spin Intrinsic angular momentum with the physical dimension of an → action,
conventionally given in units of �. Unlike the orbital angular momentum that can
adopt only integer values, the spin can also have half-integer values (representation
theory of the rotation group)
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State Description of a quantum system in terms of kinematical quantities (energy,
momentum) and quantum numbers (charge, spin, …). In quantummechanics, the
Schrödinger equation determines the time development of a quantum state. In rel-
ativistic quantum field theories, the temporal development is much more complex
(particle creation and annihilation). Experimentally accessible are probabilities
for transitions from given initial states to specified final states (→ S-matrix)

Symmetry Transformation of coordinates and fields leaving equations of motion
and/or field equations invariant. Such transformations satisfy the postulates of
a mathematical group: the result of two successive symmetry transformations
is again a symmetry transformation. Depending on the transformation parame-
ters, one distinguishes between discrete (e.g., space reflection) and continuous
(e.g., rotations) symmetries. Those parameters are either coordinate independent
(global symmetry) or they depend on local coordinates (local symmetry = gauge
symmetry)
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Divergences (infinities), 55–62, 84

E
Effective Field Theory (EFT), 113–114
Ehrenfest paradox, 34
Electric dipole moment, 41, 111
Electron, 9, 110
Energy frontier, 109–111
Exclusion principle, 23, 37

F
Fermilab (FNAL), 2, 91, 104, 111
Fermion generation, 90–91
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Feynman diagram, 47–53, 55–61, 67, 70, 88
Fine structure, 28, 30
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105, 119
Fourier decomposition, 22
Franck-Hertz experiment, 20

G
Galilei transformation, 12–13, 39, 123
Gauge boson, 92, 106
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SU (3) × SU (2)L ×U (1), 88, 101, 105
SU (Nc), 84
U (1), 46, 60

Gauge invariance, 46, 56, 60, 92, 121–123
Gauge theory, 46, 70–74, 81–84, 87, 88, 90,

91
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Heaviside system, 18, 119, 121
Higgs boson, 35, 94–95
Higgs potential, 93
Histogram, 2–3
Homestake experiment, 97, 99
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Interaction
electromagnetic, 43–54
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range, 65, 71
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universality, 68, 83
weak, 65–74
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Invariant mass, 2, 3, 102
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J
Jet, 114
J-PARC, 104, 111
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KATRIN experiment, 100
Klein–Gordon equation, 28
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Many-worlds interpretation, 1, 3
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N
Nambu-Goldstone boson, 73, 74
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Neutrino, 65–71, 88, 91, 97–100
atmospheric, 97–98
counting, 92–93
Dirac, 100
Majorana, 100
masses, 97–107
oscillation, 92, 98–100
solar, 97–99

Neutron, 77
New Physics, 109, 113
Noether theorem, 39, 45

P
Parity, 41, 45, 68–70
Parton model, 80
Perturbation theory, 47–52, 55–63, 70, 78,
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Photo effect, 11
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Planck’s constant, 10, 11, 18, 56, 119
Planck’s radiation law, 10, 11, 30
Platonic solids, 39
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mass, 60
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S
Scattering
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Rutherford, 14, 77

Schrödinger equation, 22–28, 35, 57
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global, 90
internal, 45
isospin, 78
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supersymmetry (SUSY), 105

T
Tau lepton, 111
Time dilatation, 13–14
Time reversal, 40, 41, 45
Top quark, 91
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U
UA1/UA2 experiments, 92
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V
Vacuum polarisation, 57–62
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W
Wave function, 22–26, 37, 46
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